在慢性偏头痛小鼠模型中,二甲双胍通过TREM2-SYK信号通路调节神经炎症,从而减轻中枢致敏。

IF 9.3 1区 医学 Q1 IMMUNOLOGY Journal of Neuroinflammation Pub Date : 2024-12-03 DOI:10.1186/s12974-024-03313-2
Zhenzhen Fan, Dandan Su, Zi Chao Li, Songtang Sun, Zhaoming Ge
{"title":"在慢性偏头痛小鼠模型中,二甲双胍通过TREM2-SYK信号通路调节神经炎症,从而减轻中枢致敏。","authors":"Zhenzhen Fan, Dandan Su, Zi Chao Li, Songtang Sun, Zhaoming Ge","doi":"10.1186/s12974-024-03313-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Chronic migraine (CM) is a serious neurological disorder. Central sensitization is one of the important pathophysiological mechanisms underlying CM, and microglia-induced neuroinflammation conduces to central sensitization. Triggering receptor expressed on myeloid cells 2 (TREM2) is presented solely in microglia residing within the central nervous system and plays a key role in neuroinflammation. Metformin has been shown to regulate inflammatory responses and exert analgesic effects, but its relationship with CM remains unclear. In the study, we investigated whether metformin modulates TREM2 to improve central sensitization of CM and clarified the potential molecular mechanisms.</p><p><strong>Methods: </strong>A CM mouse model was induced by administration of nitroglycerin (NTG). Behavioral evaluations were conducted using von Frey filaments and hot plate experiments. Western blot and immunofluorescence techniques were employed to investigate the molecular mechanisms. Metformin and the SYK inhibitor R406 were administered to mice to assess their regulatory effects on neuroinflammation and central sensitization. To explore the role of TREM2-SYK in regulating neuroinflammation with metformin, a lentivirus encoding TREM2 was injected into the trigeminal nucleus caudalis (TNC). In vitro experiments were conducted to evaluate the regulation of TREM2-SYK by metformin, involving interventions with LPS, metformin, R406, siTREM2, and TREM2 plasmids.</p><p><strong>Results: </strong>Metformin and R406 pretreatment can effectively improve hyperalgesia in CM mice. Both metformin and R406 significantly inhibit c-fos and CGRP expression in CM mice, effectively suppressing the activation of microglia and NLRP3 inflammasome induced by NTG. With the administration of NTG, TREM2 expression gradually increased in TNC microglia. Additionally, we observed that metformin significantly inhibits TREM2 and SYK expression in CM mice. Lv-TREM2 attenuated metformin-mediated anti-inflammatory responses. In vitro experiments, knockdown of TREM2 inhibited LPS-induced SYK pathway activation and alleviated inflammatory responses. After the sole overexpression of TREM2, the SYK signaling pathway is activated, resulting in the activation of the NLRP3 inflammasome and an increased expression of pro-inflammatory cytokines; nevertheless, this consequence can be reversed by R406. The overexpression of TREM2 attenuates the inhibition of SYK activity mediated by metformin, and this effect can be reversed by R406.</p><p><strong>Conclusions: </strong>Our findings suggest that metformin attenuates central sensitization in CM by regulating the activation of microglia and NLRP3 inflammasome through the TREM2-SYK pathway.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"318"},"PeriodicalIF":9.3000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613737/pdf/","citationCount":"0","resultStr":"{\"title\":\"Metformin attenuates central sensitization by regulating neuroinflammation through the TREM2-SYK signaling pathway in a mouse model of chronic migraine.\",\"authors\":\"Zhenzhen Fan, Dandan Su, Zi Chao Li, Songtang Sun, Zhaoming Ge\",\"doi\":\"10.1186/s12974-024-03313-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Chronic migraine (CM) is a serious neurological disorder. Central sensitization is one of the important pathophysiological mechanisms underlying CM, and microglia-induced neuroinflammation conduces to central sensitization. Triggering receptor expressed on myeloid cells 2 (TREM2) is presented solely in microglia residing within the central nervous system and plays a key role in neuroinflammation. Metformin has been shown to regulate inflammatory responses and exert analgesic effects, but its relationship with CM remains unclear. In the study, we investigated whether metformin modulates TREM2 to improve central sensitization of CM and clarified the potential molecular mechanisms.</p><p><strong>Methods: </strong>A CM mouse model was induced by administration of nitroglycerin (NTG). Behavioral evaluations were conducted using von Frey filaments and hot plate experiments. Western blot and immunofluorescence techniques were employed to investigate the molecular mechanisms. Metformin and the SYK inhibitor R406 were administered to mice to assess their regulatory effects on neuroinflammation and central sensitization. To explore the role of TREM2-SYK in regulating neuroinflammation with metformin, a lentivirus encoding TREM2 was injected into the trigeminal nucleus caudalis (TNC). In vitro experiments were conducted to evaluate the regulation of TREM2-SYK by metformin, involving interventions with LPS, metformin, R406, siTREM2, and TREM2 plasmids.</p><p><strong>Results: </strong>Metformin and R406 pretreatment can effectively improve hyperalgesia in CM mice. Both metformin and R406 significantly inhibit c-fos and CGRP expression in CM mice, effectively suppressing the activation of microglia and NLRP3 inflammasome induced by NTG. With the administration of NTG, TREM2 expression gradually increased in TNC microglia. Additionally, we observed that metformin significantly inhibits TREM2 and SYK expression in CM mice. Lv-TREM2 attenuated metformin-mediated anti-inflammatory responses. In vitro experiments, knockdown of TREM2 inhibited LPS-induced SYK pathway activation and alleviated inflammatory responses. After the sole overexpression of TREM2, the SYK signaling pathway is activated, resulting in the activation of the NLRP3 inflammasome and an increased expression of pro-inflammatory cytokines; nevertheless, this consequence can be reversed by R406. The overexpression of TREM2 attenuates the inhibition of SYK activity mediated by metformin, and this effect can be reversed by R406.</p><p><strong>Conclusions: </strong>Our findings suggest that metformin attenuates central sensitization in CM by regulating the activation of microglia and NLRP3 inflammasome through the TREM2-SYK pathway.</p>\",\"PeriodicalId\":16577,\"journal\":{\"name\":\"Journal of Neuroinflammation\",\"volume\":\"21 1\",\"pages\":\"318\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613737/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroinflammation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12974-024-03313-2\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroinflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12974-024-03313-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:慢性偏头痛是一种严重的神经系统疾病。中枢致敏是CM的重要病理生理机制之一,小胶质细胞诱导的神经炎症有助于中枢致敏。髓样细胞2触发受体(TREM2)仅存在于中枢神经系统的小胶质细胞中,在神经炎症中起关键作用。二甲双胍已被证明可调节炎症反应并发挥镇痛作用,但其与CM的关系尚不清楚。在这项研究中,我们研究了二甲双胍是否通过调节TREM2来改善CM的中枢致敏,并阐明了潜在的分子机制。方法:用硝酸甘油(NTG)诱导CM小鼠模型。采用von Frey细丝和热板实验进行行为评价。采用Western blot和免疫荧光技术研究其分子机制。给小鼠二甲双胍和SYK抑制剂R406,以评估其对神经炎症和中枢致敏的调节作用。为了探讨TREM2- syk在二甲双胍调节神经炎症中的作用,将编码TREM2的慢病毒注射到三叉神经尾核(TNC)中。体外实验评估二甲双胍对TREM2- syk的调控作用,包括LPS、二甲双胍、R406、siTREM2和TREM2质粒的干预。结果:二甲双胍和R406预处理能有效改善CM小鼠痛觉过敏。二甲双胍和R406均能显著抑制CM小鼠c-fos和CGRP的表达,有效抑制NTG诱导的小胶质细胞和NLRP3炎性体的活化。随着NTG的给药,TREM2在TNC小胶质细胞中的表达逐渐升高。此外,我们观察到二甲双胍显著抑制CM小鼠TREM2和SYK的表达。Lv-TREM2减弱二甲双胍介导的抗炎反应。在体外实验中,敲低TREM2可抑制lps诱导的SYK通路激活,减轻炎症反应。TREM2单独过表达后,SYK信号通路被激活,导致NLRP3炎性小体激活,促炎细胞因子表达增加;然而,这种结果可以通过R406逆转。TREM2过表达可减弱二甲双胍介导的SYK活性抑制,R406可逆转这一作用。结论:我们的研究结果表明,二甲双胍通过TREM2-SYK途径调节小胶质细胞和NLRP3炎性体的激活,从而减轻CM的中枢致敏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Metformin attenuates central sensitization by regulating neuroinflammation through the TREM2-SYK signaling pathway in a mouse model of chronic migraine.

Background: Chronic migraine (CM) is a serious neurological disorder. Central sensitization is one of the important pathophysiological mechanisms underlying CM, and microglia-induced neuroinflammation conduces to central sensitization. Triggering receptor expressed on myeloid cells 2 (TREM2) is presented solely in microglia residing within the central nervous system and plays a key role in neuroinflammation. Metformin has been shown to regulate inflammatory responses and exert analgesic effects, but its relationship with CM remains unclear. In the study, we investigated whether metformin modulates TREM2 to improve central sensitization of CM and clarified the potential molecular mechanisms.

Methods: A CM mouse model was induced by administration of nitroglycerin (NTG). Behavioral evaluations were conducted using von Frey filaments and hot plate experiments. Western blot and immunofluorescence techniques were employed to investigate the molecular mechanisms. Metformin and the SYK inhibitor R406 were administered to mice to assess their regulatory effects on neuroinflammation and central sensitization. To explore the role of TREM2-SYK in regulating neuroinflammation with metformin, a lentivirus encoding TREM2 was injected into the trigeminal nucleus caudalis (TNC). In vitro experiments were conducted to evaluate the regulation of TREM2-SYK by metformin, involving interventions with LPS, metformin, R406, siTREM2, and TREM2 plasmids.

Results: Metformin and R406 pretreatment can effectively improve hyperalgesia in CM mice. Both metformin and R406 significantly inhibit c-fos and CGRP expression in CM mice, effectively suppressing the activation of microglia and NLRP3 inflammasome induced by NTG. With the administration of NTG, TREM2 expression gradually increased in TNC microglia. Additionally, we observed that metformin significantly inhibits TREM2 and SYK expression in CM mice. Lv-TREM2 attenuated metformin-mediated anti-inflammatory responses. In vitro experiments, knockdown of TREM2 inhibited LPS-induced SYK pathway activation and alleviated inflammatory responses. After the sole overexpression of TREM2, the SYK signaling pathway is activated, resulting in the activation of the NLRP3 inflammasome and an increased expression of pro-inflammatory cytokines; nevertheless, this consequence can be reversed by R406. The overexpression of TREM2 attenuates the inhibition of SYK activity mediated by metformin, and this effect can be reversed by R406.

Conclusions: Our findings suggest that metformin attenuates central sensitization in CM by regulating the activation of microglia and NLRP3 inflammasome through the TREM2-SYK pathway.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Neuroinflammation
Journal of Neuroinflammation 医学-神经科学
CiteScore
15.90
自引率
3.20%
发文量
276
审稿时长
1 months
期刊介绍: The Journal of Neuroinflammation is a peer-reviewed, open access publication that emphasizes the interaction between the immune system, particularly the innate immune system, and the nervous system. It covers various aspects, including the involvement of CNS immune mediators like microglia and astrocytes, the cytokines and chemokines they produce, and the influence of peripheral neuro-immune interactions, T cells, monocytes, complement proteins, acute phase proteins, oxidative injury, and related molecular processes. Neuroinflammation is a rapidly expanding field that has significantly enhanced our knowledge of chronic neurological diseases. It attracts researchers from diverse disciplines such as pathology, biochemistry, molecular biology, genetics, clinical medicine, and epidemiology. Substantial contributions to this field have been made through studies involving populations, patients, postmortem tissues, animal models, and in vitro systems. The Journal of Neuroinflammation consolidates research that centers around common pathogenic processes. It serves as a platform for integrative reviews and commentaries in this field.
期刊最新文献
CCL21-CCR7 blockade prevents neuroinflammation and degeneration in Parkinson's disease models. Probiotics alleviate painful diabetic neuropathy by modulating the microbiota-gut-nerve axis in rats. Astrocytic heterogeneous nuclear ribonucleoprotein U is involved in scar formation after spinal cord injury. Exploratory analysis of a Novel RACK1 mutation and its potential role in epileptic seizures via Microglia activation. Microglial C/EBPβ-Fcgr1 regulatory axis blocking inhibits microglial pyroptosis and improves neurological recovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1