温度和CO2富集对南加州红藻杉形天冬酰胺的影响及其对水产养殖的启示。

IF 2.8 3区 生物学 Q1 MARINE & FRESHWATER BIOLOGY Journal of Phycology Pub Date : 2024-12-01 DOI:10.1111/jpy.13526
Hannah M Resetarits, Gal Dishon, Vinayak Agarwal, Jennifer E Smith
{"title":"温度和CO2富集对南加州红藻杉形天冬酰胺的影响及其对水产养殖的启示。","authors":"Hannah M Resetarits, Gal Dishon, Vinayak Agarwal, Jennifer E Smith","doi":"10.1111/jpy.13526","DOIUrl":null,"url":null,"abstract":"<p><p>The red alga Asparagopsis taxiformis has recently been recognized for its unique ability to significantly reduce methane emissions from ruminant animals when fed in small quantities. The main obstacle in using this seaweed as a methane-mitigating feed supplement is the lack of commercially available biomass. Little is known about how best to grow this red alga on a commercial scale, as there are few published studies that have investigated the factors that influence growth, physiology, and overall performance. This study examined the effects of temperature and CO<sub>2</sub> enrichment on the growth, photophysiology, and concentration of bromoform, the secondary metabolite largely responsible for methane reduction in A. taxiformis. A series of single and multifactor closed culture experiments were conducted on A. taxiformis collected, isolated, and cultured from populations in Southern California. We identified the optimal temperature range to be between 22 and 26°C, with significant short-term stress observed below 15°C and above 26°C. Carbon dioxide addition resulted in increased performance, when accounting for growth per CO<sub>2</sub> use. In general, we observed the highest bromoform concentrations in algae with the highest growth rates, but these results varied among experiments. These findings indicate that through environmental control and by addressing limiting resources, significant increases in biomass production and quality can be achieved.</p>","PeriodicalId":16831,"journal":{"name":"Journal of Phycology","volume":" ","pages":"1567-1584"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11670279/pdf/","citationCount":"0","resultStr":"{\"title\":\"The effects of temperature and CO<sub>2</sub> enrichment on the red seaweed Asparagopsis taxiformis from Southern California with implications for aquaculture.\",\"authors\":\"Hannah M Resetarits, Gal Dishon, Vinayak Agarwal, Jennifer E Smith\",\"doi\":\"10.1111/jpy.13526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The red alga Asparagopsis taxiformis has recently been recognized for its unique ability to significantly reduce methane emissions from ruminant animals when fed in small quantities. The main obstacle in using this seaweed as a methane-mitigating feed supplement is the lack of commercially available biomass. Little is known about how best to grow this red alga on a commercial scale, as there are few published studies that have investigated the factors that influence growth, physiology, and overall performance. This study examined the effects of temperature and CO<sub>2</sub> enrichment on the growth, photophysiology, and concentration of bromoform, the secondary metabolite largely responsible for methane reduction in A. taxiformis. A series of single and multifactor closed culture experiments were conducted on A. taxiformis collected, isolated, and cultured from populations in Southern California. We identified the optimal temperature range to be between 22 and 26°C, with significant short-term stress observed below 15°C and above 26°C. Carbon dioxide addition resulted in increased performance, when accounting for growth per CO<sub>2</sub> use. In general, we observed the highest bromoform concentrations in algae with the highest growth rates, but these results varied among experiments. These findings indicate that through environmental control and by addressing limiting resources, significant increases in biomass production and quality can be achieved.</p>\",\"PeriodicalId\":16831,\"journal\":{\"name\":\"Journal of Phycology\",\"volume\":\" \",\"pages\":\"1567-1584\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11670279/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Phycology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/jpy.13526\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Phycology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jpy.13526","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

红藻taxxiformasparagopsis最近因其在少量饲养时显著减少反刍动物甲烷排放的独特能力而得到认可。使用这种海藻作为减少甲烷的饲料补充的主要障碍是缺乏商业上可用的生物质。关于如何在商业规模上最好地种植这种红藻,人们知之甚少,因为很少有发表的研究调查了影响生长、生理和整体性能的因素。本研究考察了温度和CO2富集对柽柳生长、光生理和溴甲烷浓度的影响。溴甲烷是柽柳减少甲烷的主要次生代谢物。对在美国南加州采集、分离和培养的沙蝇进行了一系列单因素和多因素封闭培养实验。我们确定最佳温度范围为22°C至26°C,在15°C以下和26°C以上观察到显著的短期应力。当考虑到每二氧化碳使用量的增长时,二氧化碳的添加导致性能的提高。一般来说,我们观察到生长速度最快的藻类中溴仿浓度最高,但这些结果在不同的实验中有所不同。这些发现表明,通过环境控制和解决有限资源问题,可以实现生物质产量和质量的显著增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The effects of temperature and CO2 enrichment on the red seaweed Asparagopsis taxiformis from Southern California with implications for aquaculture.

The red alga Asparagopsis taxiformis has recently been recognized for its unique ability to significantly reduce methane emissions from ruminant animals when fed in small quantities. The main obstacle in using this seaweed as a methane-mitigating feed supplement is the lack of commercially available biomass. Little is known about how best to grow this red alga on a commercial scale, as there are few published studies that have investigated the factors that influence growth, physiology, and overall performance. This study examined the effects of temperature and CO2 enrichment on the growth, photophysiology, and concentration of bromoform, the secondary metabolite largely responsible for methane reduction in A. taxiformis. A series of single and multifactor closed culture experiments were conducted on A. taxiformis collected, isolated, and cultured from populations in Southern California. We identified the optimal temperature range to be between 22 and 26°C, with significant short-term stress observed below 15°C and above 26°C. Carbon dioxide addition resulted in increased performance, when accounting for growth per CO2 use. In general, we observed the highest bromoform concentrations in algae with the highest growth rates, but these results varied among experiments. These findings indicate that through environmental control and by addressing limiting resources, significant increases in biomass production and quality can be achieved.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Phycology
Journal of Phycology 生物-海洋与淡水生物学
CiteScore
6.50
自引率
3.40%
发文量
69
审稿时长
2 months
期刊介绍: The Journal of Phycology was founded in 1965 by the Phycological Society of America. All aspects of basic and applied research on algae are included to provide a common medium for the ecologist, physiologist, cell biologist, molecular biologist, morphologist, oceanographer, taxonomist, geneticist, and biochemist. The Journal also welcomes research that emphasizes algal interactions with other organisms and the roles of algae as components of natural ecosystems. All aspects of basic and applied research on algae are included to provide a common medium for the ecologist, physiologist, cell biologist, molecular biologist, morphologist, oceanographer, acquaculturist, systematist, geneticist, and biochemist. The Journal also welcomes research that emphasizes algal interactions with other organisms and the roles of algae as components of natural ecosystems.
期刊最新文献
Exploring cyanobacteria from diverse habitats of the Konkan region of India, unveiling novel species of the genera Desikacharya, Pseudoaliinostoc, and Chlorogloeopsis using a polyphasic approach. Asynchronous shifts in the demographics of two wave-swept kelp species (Laminariales) after nearly four decades. Function of N-acetyltransferase in the biotransformation of aniline in green alga Chlamydomonas reinhardtii. Unraveling the Bryocladia scopulorum complex from the Southwestern Atlantic Ocean with the description of three new species of Bryocladia (Rhodomelaceae, Rhodophyta). Nutritional consistency of macroalgae across a sea ice cover gradient along the Western Antarctic Peninsula.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1