用于癌症药物药代动力学-药效学(PK-PD)建模和模拟的多器官芯片。

IF 2.2 4区 医学 Q3 PHARMACOLOGY & PHARMACY Journal of Pharmacokinetics and Pharmacodynamics Pub Date : 2024-12-04 DOI:10.1007/s10928-024-09955-2
Abdurehman Eshete Mohammed, Filiz Kurucaovalı, Devrim Pesen Okvur
{"title":"用于癌症药物药代动力学-药效学(PK-PD)建模和模拟的多器官芯片。","authors":"Abdurehman Eshete Mohammed, Filiz Kurucaovalı, Devrim Pesen Okvur","doi":"10.1007/s10928-024-09955-2","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer is one of the most common and fatal diseases worldwide and kills millions of people every year. Cancer drug resistance, lack of efficacy, and safety are significant problems in cancer patients. A multiorgan-on-a-chip (MOC) device consisting of breast and liver compartments was designed with AutoCAD software. The MOC molds were printed by a Formlabs Form 2 3D printer. MDA-MB-231, HepG2, and MCF-10 A cells were used for the MOC experiments. The cell lines were cultured at 37 °C with 5% CO<sub>2,</sub> and cell viability was assessed via Alamar blue dye to generate pharmacodynamics (PD) data. Drug concentrations from the cell culture media were analyzed via Agilent 1260 Infinity II HPLC with a Waters Symmetry C18 column and used to generate pharmacokinetics (PK) data. The PK and PD data were modeled and simulated by Monolix and Simulix software, respectively. The safety and efficacy of drug dosing regimens were compared, and the best dosing regimens were selected. This research designed and fabricated a unique MOC consisting of liver and breast compartments that overcomes the need for sealing or assembling. It was used for PK-PD modeling and simulations, and its functionality was proven experimentally. The new MOC will be helpful in preclinical trials to evaluate the efficacy and safety of drugs.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":"52 1","pages":"1"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiorgan-on-a-chip for cancer drug pharmacokinetics-pharmacodynamics (PK-PD) modeling and simulations.\",\"authors\":\"Abdurehman Eshete Mohammed, Filiz Kurucaovalı, Devrim Pesen Okvur\",\"doi\":\"10.1007/s10928-024-09955-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer is one of the most common and fatal diseases worldwide and kills millions of people every year. Cancer drug resistance, lack of efficacy, and safety are significant problems in cancer patients. A multiorgan-on-a-chip (MOC) device consisting of breast and liver compartments was designed with AutoCAD software. The MOC molds were printed by a Formlabs Form 2 3D printer. MDA-MB-231, HepG2, and MCF-10 A cells were used for the MOC experiments. The cell lines were cultured at 37 °C with 5% CO<sub>2,</sub> and cell viability was assessed via Alamar blue dye to generate pharmacodynamics (PD) data. Drug concentrations from the cell culture media were analyzed via Agilent 1260 Infinity II HPLC with a Waters Symmetry C18 column and used to generate pharmacokinetics (PK) data. The PK and PD data were modeled and simulated by Monolix and Simulix software, respectively. The safety and efficacy of drug dosing regimens were compared, and the best dosing regimens were selected. This research designed and fabricated a unique MOC consisting of liver and breast compartments that overcomes the need for sealing or assembling. It was used for PK-PD modeling and simulations, and its functionality was proven experimentally. The new MOC will be helpful in preclinical trials to evaluate the efficacy and safety of drugs.</p>\",\"PeriodicalId\":16851,\"journal\":{\"name\":\"Journal of Pharmacokinetics and Pharmacodynamics\",\"volume\":\"52 1\",\"pages\":\"1\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pharmacokinetics and Pharmacodynamics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10928-024-09955-2\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacokinetics and Pharmacodynamics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10928-024-09955-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

癌症是世界上最常见、最致命的疾病之一,每年夺去数百万人的生命。癌症耐药、缺乏疗效和安全性是困扰癌症患者的重要问题。利用AutoCAD软件设计了一种由乳腺和肝室组成的多器官芯片(MOC)装置。MOC模具由Formlabs Form 2 3D打印机打印。使用MDA-MB-231、HepG2和mcf - 10a细胞进行MOC实验。在37℃、5% CO2条件下培养细胞系,用Alamar蓝染料测定细胞活力,生成药效学(PD)数据。通过Agilent 1260 Infinity II高效液相色谱柱(Waters Symmetry C18柱)分析细胞培养基中的药物浓度,并生成药代动力学(PK)数据。分别用Monolix和Simulix软件对PK和PD数据进行建模和仿真。比较不同给药方案的安全性和有效性,选择最佳给药方案。本研究设计并制造了一种独特的MOC,由肝脏和乳房隔室组成,克服了密封或组装的需要。将其用于PK-PD建模和仿真,并通过实验验证了其功能。新的MOC将有助于临床前试验评估药物的有效性和安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiorgan-on-a-chip for cancer drug pharmacokinetics-pharmacodynamics (PK-PD) modeling and simulations.

Cancer is one of the most common and fatal diseases worldwide and kills millions of people every year. Cancer drug resistance, lack of efficacy, and safety are significant problems in cancer patients. A multiorgan-on-a-chip (MOC) device consisting of breast and liver compartments was designed with AutoCAD software. The MOC molds were printed by a Formlabs Form 2 3D printer. MDA-MB-231, HepG2, and MCF-10 A cells were used for the MOC experiments. The cell lines were cultured at 37 °C with 5% CO2, and cell viability was assessed via Alamar blue dye to generate pharmacodynamics (PD) data. Drug concentrations from the cell culture media were analyzed via Agilent 1260 Infinity II HPLC with a Waters Symmetry C18 column and used to generate pharmacokinetics (PK) data. The PK and PD data were modeled and simulated by Monolix and Simulix software, respectively. The safety and efficacy of drug dosing regimens were compared, and the best dosing regimens were selected. This research designed and fabricated a unique MOC consisting of liver and breast compartments that overcomes the need for sealing or assembling. It was used for PK-PD modeling and simulations, and its functionality was proven experimentally. The new MOC will be helpful in preclinical trials to evaluate the efficacy and safety of drugs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
4.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Broadly speaking, the Journal of Pharmacokinetics and Pharmacodynamics covers the area of pharmacometrics. The journal is devoted to illustrating the importance of pharmacokinetics, pharmacodynamics, and pharmacometrics in drug development, clinical care, and the understanding of drug action. The journal publishes on a variety of topics related to pharmacometrics, including, but not limited to, clinical, experimental, and theoretical papers examining the kinetics of drug disposition and effects of drug action in humans, animals, in vitro, or in silico; modeling and simulation methodology, including optimal design; precision medicine; systems pharmacology; and mathematical pharmacology (including computational biology, bioengineering, and biophysics related to pharmacology, pharmacokinetics, orpharmacodynamics). Clinical papers that include population pharmacokinetic-pharmacodynamic relationships are welcome. The journal actively invites and promotes up-and-coming areas of pharmacometric research, such as real-world evidence, quality of life analyses, and artificial intelligence. The Journal of Pharmacokinetics and Pharmacodynamics is an official journal of the International Society of Pharmacometrics.
期刊最新文献
Defining preclinical efficacy with the DNAPK inhibitor AZD7648 in combination with olaparib: a minimal systems pharmacokinetic-pharmacodynamic model. Reliability of in vitro data for the mechanistic prediction of brain extracellular fluid pharmacokinetics of P-glycoprotein substrates in vivo; are we scaling correctly? Quantifying natural amyloid plaque accumulation in the continuum of Alzheimer's disease using ADNI. Stronger together: a cross-SIG perspective on improving drug development. A physiologically-based quantitative systems pharmacology model for mechanistic understanding of the response to alogliptin and its application in patients with renal impairment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1