重性抑郁症感觉运动浅白质系统的网络拓扑结构异常。

IF 4.7 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Zhejiang University SCIENCE B Pub Date : 2024-12-03 DOI:10.1631/jzus.B2300880
Peng Wang, Yanling Bai, Yang Xiao, Yuhong Zheng, Li Sun, The Direct Consortium, Jinhui Wang, Shaowei Xue
{"title":"重性抑郁症感觉运动浅白质系统的网络拓扑结构异常。","authors":"Peng Wang, Yanling Bai, Yang Xiao, Yuhong Zheng, Li Sun, The Direct Consortium, Jinhui Wang, Shaowei Xue","doi":"10.1631/jzus.B2300880","DOIUrl":null,"url":null,"abstract":"<p><p>White-matter tracts play a pivotal role in transmitting sensory and motor information, facilitating interhemispheric communication and integrating different brain regions. Meanwhile, sensorimotor disturbance is a common symptom in patients with major depressive disorder (MDD). However, the role of aberrant sensorimotor white-matter system in MDD remains largely unknown. Herein, we investigated the topological structure alterations of white-matter morphological brain networks in 233 MDD patients versus 257 matched healthy controls (HCs) from the DIRECT consortium. White-matter networks were derived from magnetic resonance imaging (MRI) data by combining voxel-based morphometry (VBM) and three-dimensional discrete wavelet transform (3D-DWT) approaches. Support vector machine (SVM) analysis was performed to discriminate MDD patients from HCs. The results indicated that the network topological changes in node degree, node efficiency, and node betweenness were mainly located in the sensorimotor superficial white-matter system in MDD. Using network nodal topological properties as classification features, the SVM model could effectively distinguish MDD patients from HCs. These findings provide new evidence to highlight the importance of the sensorimotor system in brain mechanisms underlying MDD from a new perspective of white-matter morphological network.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":" ","pages":"1-13"},"PeriodicalIF":4.7000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aberrant network topological structure of sensorimotor superficial white-matter system in major depressive disorder.\",\"authors\":\"Peng Wang, Yanling Bai, Yang Xiao, Yuhong Zheng, Li Sun, The Direct Consortium, Jinhui Wang, Shaowei Xue\",\"doi\":\"10.1631/jzus.B2300880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>White-matter tracts play a pivotal role in transmitting sensory and motor information, facilitating interhemispheric communication and integrating different brain regions. Meanwhile, sensorimotor disturbance is a common symptom in patients with major depressive disorder (MDD). However, the role of aberrant sensorimotor white-matter system in MDD remains largely unknown. Herein, we investigated the topological structure alterations of white-matter morphological brain networks in 233 MDD patients versus 257 matched healthy controls (HCs) from the DIRECT consortium. White-matter networks were derived from magnetic resonance imaging (MRI) data by combining voxel-based morphometry (VBM) and three-dimensional discrete wavelet transform (3D-DWT) approaches. Support vector machine (SVM) analysis was performed to discriminate MDD patients from HCs. The results indicated that the network topological changes in node degree, node efficiency, and node betweenness were mainly located in the sensorimotor superficial white-matter system in MDD. Using network nodal topological properties as classification features, the SVM model could effectively distinguish MDD patients from HCs. These findings provide new evidence to highlight the importance of the sensorimotor system in brain mechanisms underlying MDD from a new perspective of white-matter morphological network.</p>\",\"PeriodicalId\":17797,\"journal\":{\"name\":\"Journal of Zhejiang University SCIENCE B\",\"volume\":\" \",\"pages\":\"1-13\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Zhejiang University SCIENCE B\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1631/jzus.B2300880\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Zhejiang University SCIENCE B","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1631/jzus.B2300880","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

白质束在传递感觉和运动信息、促进大脑半球间交流和整合大脑不同区域方面发挥着关键作用。同时,感觉运动障碍是重度抑郁症(MDD)患者的常见症状。然而,异常感觉运动白质系统在重度抑郁症中的作用仍不清楚。在此,我们研究了233名重度抑郁症患者与来自DIRECT联盟的257名匹配健康对照(hc)的白质形态脑网络的拓扑结构变化。通过结合基于体素的形态测量(VBM)和三维离散小波变换(3D-DWT)方法,从磁共振成像(MRI)数据中获得白质网络。使用支持向量机(SVM)分析MDD患者与hc患者的区别。结果表明,网络拓扑结构在节点度、节点效率和节点之间的变化主要发生在MDD的感觉运动浅表白质系统。支持向量机模型利用网络节点拓扑属性作为分类特征,可以有效区分重度抑郁症患者和hc患者。这些发现为从白质形态网络的新视角强调感觉运动系统在MDD脑机制中的重要性提供了新的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aberrant network topological structure of sensorimotor superficial white-matter system in major depressive disorder.

White-matter tracts play a pivotal role in transmitting sensory and motor information, facilitating interhemispheric communication and integrating different brain regions. Meanwhile, sensorimotor disturbance is a common symptom in patients with major depressive disorder (MDD). However, the role of aberrant sensorimotor white-matter system in MDD remains largely unknown. Herein, we investigated the topological structure alterations of white-matter morphological brain networks in 233 MDD patients versus 257 matched healthy controls (HCs) from the DIRECT consortium. White-matter networks were derived from magnetic resonance imaging (MRI) data by combining voxel-based morphometry (VBM) and three-dimensional discrete wavelet transform (3D-DWT) approaches. Support vector machine (SVM) analysis was performed to discriminate MDD patients from HCs. The results indicated that the network topological changes in node degree, node efficiency, and node betweenness were mainly located in the sensorimotor superficial white-matter system in MDD. Using network nodal topological properties as classification features, the SVM model could effectively distinguish MDD patients from HCs. These findings provide new evidence to highlight the importance of the sensorimotor system in brain mechanisms underlying MDD from a new perspective of white-matter morphological network.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Zhejiang University SCIENCE B
Journal of Zhejiang University SCIENCE B 生物-生化与分子生物学
CiteScore
8.70
自引率
13.70%
发文量
2125
审稿时长
3.0 months
期刊介绍: Journal of Zheijang University SCIENCE B - Biomedicine & Biotechnology is an international journal that aims to present the latest development and achievements in scientific research in China and abroad to the world’s scientific community. JZUS-B covers research in Biomedicine and Biotechnology and Biochemistry and topics related to life science subjects, such as Plant and Animal Sciences, Environment and Resource etc.
期刊最新文献
High-dose estrogen impairs demethylation of H3K27me3 by decreasing Kdm6b expression during ovarian hyperstimulation in mice. Immune checkpoint blockade for cancer therapy: current progress and perspectives. Erratum to: Advantages of contrast-enhanced ultrasound in the localization and diagnostics of sentinel lymph nodes in breast cancer. OX40 ligand promotes follicular helper T cell differentiation and development in mice with immune thrombocytopenia. Autophagy in skeletal muscle dysfunction of chronic obstructive pulmonary disease: implications, mechanisms, and perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1