多功能可注射水凝胶系统作为轻度光热辅助治疗平台,程序化调节炎症和骨微环境,促进糖尿病骨缺损原位愈合。

IF 12.4 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Theranostics Pub Date : 2024-10-28 eCollection Date: 2024-01-01 DOI:10.7150/thno.102779
Yufan Zhu, Huifan Liu, Ping Wu, Yun Chen, Zhouming Deng, Lin Cai, Minhao Wu
{"title":"多功能可注射水凝胶系统作为轻度光热辅助治疗平台,程序化调节炎症和骨微环境,促进糖尿病骨缺损原位愈合。","authors":"Yufan Zhu, Huifan Liu, Ping Wu, Yun Chen, Zhouming Deng, Lin Cai, Minhao Wu","doi":"10.7150/thno.102779","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Factor-free biomaterial scaffolds play an increasingly important role in promoting <i>in situ</i> bone reconstruction and regeneration. However, the complicated and variable pathophysiological microenvironments of the injury sites under diabetic conditions, including the vicious cycle of oxidative stress and inflammatory response, impaired osteo/angiogenesis function and hyperactive osteoclastogenesis, as well as increased susceptibility to bacterial infection, may largely weaken the therapeutic potential of implanted scaffolds, leading to uncontrolled and poor outcomes of bone defect healing. <b>Methods and Results:</b> To tackle the aforementioned challenges, a mild photothermal-assisted multifunctional therapeutic platform (denoted as GAD/MC) that integrates copper-containing two-dimensional Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene nanosheets, gelatin methacrylate, and alginate-graft-dopamine was proposed to achieve efficient and synergistic therapy for diabetic bone defects. Thereinto, copper-decorated MXene (MC) nanosheets were employed as both functional crosslinkers and nanofillers to participate in the construction of an interpenetrating polymer network structure through multiple covalent and noncovalent bonds, which conferred the hydrogel with advantageous traits like enhanced mechanical properties, injectability and moldability, strong bone tissue adhesion and self-healing ability, as well as excellent anti-swelling and near-infrared (NIR) photothermal conversion capabilities. On account of the NIR/pH dual-responsive properties, the resulting hydrogel system was capable of achieving the controlled and stimuli-responsive release of bioactive Cu<sup>2+</sup>, allowing on-demand delivery at the site of injury. Moreover, with the assistance of mild photothermal effects, this integrated hydrogel system demonstrated remarkable antibacterial and antioxidant properties. It effectively scavenged excessive reactive oxygen species (ROS), inhibited inflammatory responses, and promoted macrophage polarization towards the pro-healing M2 phenotype. Such characteristics were beneficial for recreating an optimized microenvironment that supported the adhesion, proliferation, migration, and differentiation of osteoblasts and endothelial cells, while concurrently inhibiting osteoclast function. In a critical-sized cranial defect model using diabetic rats, the injectable GAD/MC hydrogel system combined with on-demand mild hyperthermia further synergistically accelerated new bone formation and bone healing processes by eliminating intracellular ROS, ameliorating inflammation, orchestrating M2 macrophage polarization, promoting osteo/angiogenesis, and suppressing osteoclastogenesis. <b>Conclusions:</b> Overall, the constructed multifunctional injectable hydrogel system has emerged as a promising therapeutic candidate for addressing complex bone-related challenges by remodeling the disordered immune microenvironment and expediting the bone healing process.</p>","PeriodicalId":22932,"journal":{"name":"Theranostics","volume":"14 18","pages":"7140-7198"},"PeriodicalIF":12.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11610133/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multifunctional injectable hydrogel system as a mild photothermal-assisted therapeutic platform for programmed regulation of inflammation and osteo-microenvironment for enhanced healing of diabetic bone defects <i>in situ</i>.\",\"authors\":\"Yufan Zhu, Huifan Liu, Ping Wu, Yun Chen, Zhouming Deng, Lin Cai, Minhao Wu\",\"doi\":\"10.7150/thno.102779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background:</b> Factor-free biomaterial scaffolds play an increasingly important role in promoting <i>in situ</i> bone reconstruction and regeneration. However, the complicated and variable pathophysiological microenvironments of the injury sites under diabetic conditions, including the vicious cycle of oxidative stress and inflammatory response, impaired osteo/angiogenesis function and hyperactive osteoclastogenesis, as well as increased susceptibility to bacterial infection, may largely weaken the therapeutic potential of implanted scaffolds, leading to uncontrolled and poor outcomes of bone defect healing. <b>Methods and Results:</b> To tackle the aforementioned challenges, a mild photothermal-assisted multifunctional therapeutic platform (denoted as GAD/MC) that integrates copper-containing two-dimensional Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene nanosheets, gelatin methacrylate, and alginate-graft-dopamine was proposed to achieve efficient and synergistic therapy for diabetic bone defects. Thereinto, copper-decorated MXene (MC) nanosheets were employed as both functional crosslinkers and nanofillers to participate in the construction of an interpenetrating polymer network structure through multiple covalent and noncovalent bonds, which conferred the hydrogel with advantageous traits like enhanced mechanical properties, injectability and moldability, strong bone tissue adhesion and self-healing ability, as well as excellent anti-swelling and near-infrared (NIR) photothermal conversion capabilities. On account of the NIR/pH dual-responsive properties, the resulting hydrogel system was capable of achieving the controlled and stimuli-responsive release of bioactive Cu<sup>2+</sup>, allowing on-demand delivery at the site of injury. Moreover, with the assistance of mild photothermal effects, this integrated hydrogel system demonstrated remarkable antibacterial and antioxidant properties. It effectively scavenged excessive reactive oxygen species (ROS), inhibited inflammatory responses, and promoted macrophage polarization towards the pro-healing M2 phenotype. Such characteristics were beneficial for recreating an optimized microenvironment that supported the adhesion, proliferation, migration, and differentiation of osteoblasts and endothelial cells, while concurrently inhibiting osteoclast function. In a critical-sized cranial defect model using diabetic rats, the injectable GAD/MC hydrogel system combined with on-demand mild hyperthermia further synergistically accelerated new bone formation and bone healing processes by eliminating intracellular ROS, ameliorating inflammation, orchestrating M2 macrophage polarization, promoting osteo/angiogenesis, and suppressing osteoclastogenesis. <b>Conclusions:</b> Overall, the constructed multifunctional injectable hydrogel system has emerged as a promising therapeutic candidate for addressing complex bone-related challenges by remodeling the disordered immune microenvironment and expediting the bone healing process.</p>\",\"PeriodicalId\":22932,\"journal\":{\"name\":\"Theranostics\",\"volume\":\"14 18\",\"pages\":\"7140-7198\"},\"PeriodicalIF\":12.4000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11610133/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theranostics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.7150/thno.102779\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theranostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.7150/thno.102779","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:无因子生物材料支架在促进骨原位重建和再生方面发挥着越来越重要的作用。然而,糖尿病患者损伤部位复杂多变的病理生理微环境,包括氧化应激和炎症反应的恶性循环,成骨/血管生成功能受损和破骨细胞生成过度活跃,以及对细菌感染的易感性增加,可能在很大程度上削弱植入支架的治疗潜力,导致骨缺损愈合不受控制和预后不佳。方法与结果:为了解决上述挑战,提出了一种温和的光热辅助多功能治疗平台(表示为GAD/MC),该平台集成了含铜的二维Ti3C2Tx MXene纳米片,甲基丙烯酸明胶和海藻酸盐-移植物-多巴胺,以实现对糖尿病骨缺损的高效协同治疗。其中,铜修饰的MXene (MC)纳米片作为功能性交联剂和纳米填料,通过多个共价键和非共价键参与构建互穿聚合物网络结构,使水凝胶具有增强的力学性能、可注射性和可塑性、强骨组织粘附性和自愈能力等优点。以及优异的抗膨胀和近红外(NIR)光热转换能力。由于NIR/pH双响应特性,所得到的水凝胶体系能够实现生物活性Cu2+的受控和刺激响应释放,允许在损伤部位按需递送。此外,在温和的光热效应的帮助下,该集成水凝胶体系表现出显著的抗菌和抗氧化性能。它能有效清除过多的活性氧(ROS),抑制炎症反应,促进巨噬细胞向促愈合的M2表型极化。这些特征有利于重建优化的微环境,支持成骨细胞和内皮细胞的粘附、增殖、迁移和分化,同时抑制破骨细胞的功能。在一个使用糖尿病大鼠的临界尺寸颅骨缺损模型中,注射GAD/MC水凝胶系统结合按需轻度热疗,通过消除细胞内ROS、改善炎症、协调M2巨噬细胞极化、促进骨/血管生成和抑制破骨细胞生成,进一步协同加速新骨形成和骨愈合过程。结论:总的来说,构建的多功能可注射水凝胶系统已经成为一种有希望的治疗候选物,通过重塑无序的免疫微环境和加速骨愈合过程来解决复杂的骨相关挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multifunctional injectable hydrogel system as a mild photothermal-assisted therapeutic platform for programmed regulation of inflammation and osteo-microenvironment for enhanced healing of diabetic bone defects in situ.

Background: Factor-free biomaterial scaffolds play an increasingly important role in promoting in situ bone reconstruction and regeneration. However, the complicated and variable pathophysiological microenvironments of the injury sites under diabetic conditions, including the vicious cycle of oxidative stress and inflammatory response, impaired osteo/angiogenesis function and hyperactive osteoclastogenesis, as well as increased susceptibility to bacterial infection, may largely weaken the therapeutic potential of implanted scaffolds, leading to uncontrolled and poor outcomes of bone defect healing. Methods and Results: To tackle the aforementioned challenges, a mild photothermal-assisted multifunctional therapeutic platform (denoted as GAD/MC) that integrates copper-containing two-dimensional Ti3C2Tx MXene nanosheets, gelatin methacrylate, and alginate-graft-dopamine was proposed to achieve efficient and synergistic therapy for diabetic bone defects. Thereinto, copper-decorated MXene (MC) nanosheets were employed as both functional crosslinkers and nanofillers to participate in the construction of an interpenetrating polymer network structure through multiple covalent and noncovalent bonds, which conferred the hydrogel with advantageous traits like enhanced mechanical properties, injectability and moldability, strong bone tissue adhesion and self-healing ability, as well as excellent anti-swelling and near-infrared (NIR) photothermal conversion capabilities. On account of the NIR/pH dual-responsive properties, the resulting hydrogel system was capable of achieving the controlled and stimuli-responsive release of bioactive Cu2+, allowing on-demand delivery at the site of injury. Moreover, with the assistance of mild photothermal effects, this integrated hydrogel system demonstrated remarkable antibacterial and antioxidant properties. It effectively scavenged excessive reactive oxygen species (ROS), inhibited inflammatory responses, and promoted macrophage polarization towards the pro-healing M2 phenotype. Such characteristics were beneficial for recreating an optimized microenvironment that supported the adhesion, proliferation, migration, and differentiation of osteoblasts and endothelial cells, while concurrently inhibiting osteoclast function. In a critical-sized cranial defect model using diabetic rats, the injectable GAD/MC hydrogel system combined with on-demand mild hyperthermia further synergistically accelerated new bone formation and bone healing processes by eliminating intracellular ROS, ameliorating inflammation, orchestrating M2 macrophage polarization, promoting osteo/angiogenesis, and suppressing osteoclastogenesis. Conclusions: Overall, the constructed multifunctional injectable hydrogel system has emerged as a promising therapeutic candidate for addressing complex bone-related challenges by remodeling the disordered immune microenvironment and expediting the bone healing process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theranostics
Theranostics MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
25.40
自引率
1.60%
发文量
433
审稿时长
1 months
期刊介绍: Theranostics serves as a pivotal platform for the exchange of clinical and scientific insights within the diagnostic and therapeutic molecular and nanomedicine community, along with allied professions engaged in integrating molecular imaging and therapy. As a multidisciplinary journal, Theranostics showcases innovative research articles spanning fields such as in vitro diagnostics and prognostics, in vivo molecular imaging, molecular therapeutics, image-guided therapy, biosensor technology, nanobiosensors, bioelectronics, system biology, translational medicine, point-of-care applications, and personalized medicine. Encouraging a broad spectrum of biomedical research with potential theranostic applications, the journal rigorously peer-reviews primary research, alongside publishing reviews, news, and commentary that aim to bridge the gap between the laboratory, clinic, and biotechnology industries.
期刊最新文献
Cardiomyocyte S1PR1 promotes cardiac regeneration via AKT/mTORC1 signaling pathway. Macrophage-based pathogenesis and theranostics of vulnerable plaques. Multiple crosslinked, self-healing, and shape-adaptable hydrogel laden with pain-relieving chitosan@borneol nanoparticles for infected burn wound healing. Optimized circular RNA vaccines for superior cancer immunotherapy. Light-eye-body axis: exploring the network from retinal illumination to systemic regulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1