Seyed Mojtaba Karbasi, Alexander Refsum Jensenius, Rolf Inge Godøy, Jim Torresen
{"title":"击鼓的具身智能;击鼓机器人的强化学习方法。","authors":"Seyed Mojtaba Karbasi, Alexander Refsum Jensenius, Rolf Inge Godøy, Jim Torresen","doi":"10.3389/frobt.2024.1450097","DOIUrl":null,"url":null,"abstract":"<p><p>This paper investigates the potential of the intrinsically motivated reinforcement learning (IMRL) approach for robotic drumming. For this purpose, we implemented an IMRL-based algorithm for a drumming robot called <i>ZRob</i>, an underactuated two-DoF robotic arm with flexible grippers. Two ZRob robots were instructed to play rhythmic patterns derived from MIDI files. The RL algorithm is based on the deep deterministic policy gradient (DDPG) method, but instead of relying solely on extrinsic rewards, the robots are trained using a combination of both extrinsic and intrinsic reward signals. The results of the training experiments show that the utilization of intrinsic reward can lead to meaningful novel rhythmic patterns, while using only extrinsic reward would lead to predictable patterns identical to the MIDI inputs. Additionally, the observed drumming patterns are influenced not only by the learning algorithm but also by the robots' physical dynamics and the drum's constraints. This work suggests new insights into the potential of embodied intelligence for musical performance.</p>","PeriodicalId":47597,"journal":{"name":"Frontiers in Robotics and AI","volume":"11 ","pages":"1450097"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11609846/pdf/","citationCount":"0","resultStr":"{\"title\":\"Embodied intelligence for drumming; a reinforcement learning approach to drumming robots.\",\"authors\":\"Seyed Mojtaba Karbasi, Alexander Refsum Jensenius, Rolf Inge Godøy, Jim Torresen\",\"doi\":\"10.3389/frobt.2024.1450097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper investigates the potential of the intrinsically motivated reinforcement learning (IMRL) approach for robotic drumming. For this purpose, we implemented an IMRL-based algorithm for a drumming robot called <i>ZRob</i>, an underactuated two-DoF robotic arm with flexible grippers. Two ZRob robots were instructed to play rhythmic patterns derived from MIDI files. The RL algorithm is based on the deep deterministic policy gradient (DDPG) method, but instead of relying solely on extrinsic rewards, the robots are trained using a combination of both extrinsic and intrinsic reward signals. The results of the training experiments show that the utilization of intrinsic reward can lead to meaningful novel rhythmic patterns, while using only extrinsic reward would lead to predictable patterns identical to the MIDI inputs. Additionally, the observed drumming patterns are influenced not only by the learning algorithm but also by the robots' physical dynamics and the drum's constraints. This work suggests new insights into the potential of embodied intelligence for musical performance.</p>\",\"PeriodicalId\":47597,\"journal\":{\"name\":\"Frontiers in Robotics and AI\",\"volume\":\"11 \",\"pages\":\"1450097\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11609846/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Robotics and AI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frobt.2024.1450097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Robotics and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frobt.2024.1450097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
Embodied intelligence for drumming; a reinforcement learning approach to drumming robots.
This paper investigates the potential of the intrinsically motivated reinforcement learning (IMRL) approach for robotic drumming. For this purpose, we implemented an IMRL-based algorithm for a drumming robot called ZRob, an underactuated two-DoF robotic arm with flexible grippers. Two ZRob robots were instructed to play rhythmic patterns derived from MIDI files. The RL algorithm is based on the deep deterministic policy gradient (DDPG) method, but instead of relying solely on extrinsic rewards, the robots are trained using a combination of both extrinsic and intrinsic reward signals. The results of the training experiments show that the utilization of intrinsic reward can lead to meaningful novel rhythmic patterns, while using only extrinsic reward would lead to predictable patterns identical to the MIDI inputs. Additionally, the observed drumming patterns are influenced not only by the learning algorithm but also by the robots' physical dynamics and the drum's constraints. This work suggests new insights into the potential of embodied intelligence for musical performance.
期刊介绍:
Frontiers in Robotics and AI publishes rigorously peer-reviewed research covering all theory and applications of robotics, technology, and artificial intelligence, from biomedical to space robotics.