水凝胶微胶囊载体体系的制备。

Open research Europe Pub Date : 2024-10-25 eCollection Date: 2023-01-01 DOI:10.12688/openreseurope.16723.2
Elisa Roberti, Gaia Petrucci, Francesco Bianciardi, Stefano Palagi
{"title":"水凝胶微胶囊载体体系的制备。","authors":"Elisa Roberti, Gaia Petrucci, Francesco Bianciardi, Stefano Palagi","doi":"10.12688/openreseurope.16723.2","DOIUrl":null,"url":null,"abstract":"<p><p>Conventional drug administration often results in systemic action, thus needing high dosages and leading to potentially pronounced side effects. Targeted delivery, employing carriers like nanoparticles, aims to release drugs at a target site, but only a small fraction of nanoparticles actually reaches it. Microrobots have been proposed to overcome this issue since they can be guided to hard-to-reach sites and locally deliver payloads. To enhance their functionality, we propose microrobots made as deformable capsules with hydrogel shells and aqueous cores, having the potential added advantages of biocompatibility, permeability, and stimulus-responsiveness. Endowing microrobots with deformability could allow them to navigate inside capillaries and cross barriers to finally reach the target site. In this study, we present a cost-effective method for fabricating core-shell structures without the use of organic solvents, surfactants, or extreme pH conditions unlike other techniques (e.g. Layer by Layer). The process begins with the dripping of a mixture of hydrogels, agarose and alginate, into a solution to gelate the drops into beads. After they are loaded with calcium ions at different concentrations, they are immersed in an alginate solution to form the shell. Finally, the beads are heated to let the agarose melt and diffuse out, leaving a liquid core. By varying the concentration of calcium ions, we obtain shells of different thicknesses. To estimate it, we have developed a method using the colour intensity from microscope images. This allowed us to observe that lowering the calcium ions concentration below a threshold does not lead to the formation of continuous shells. For higher concentrations, although the core may remain partially gelled, continuous shells successfully form. Therefore, our fabrication process could find applications in drug delivery, encapsulation systems, and microrobotics.</p>","PeriodicalId":74359,"journal":{"name":"Open research Europe","volume":"3 ","pages":"191"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11605173/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fabrication of hydrogel mini-capsules as carrier systems.\",\"authors\":\"Elisa Roberti, Gaia Petrucci, Francesco Bianciardi, Stefano Palagi\",\"doi\":\"10.12688/openreseurope.16723.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Conventional drug administration often results in systemic action, thus needing high dosages and leading to potentially pronounced side effects. Targeted delivery, employing carriers like nanoparticles, aims to release drugs at a target site, but only a small fraction of nanoparticles actually reaches it. Microrobots have been proposed to overcome this issue since they can be guided to hard-to-reach sites and locally deliver payloads. To enhance their functionality, we propose microrobots made as deformable capsules with hydrogel shells and aqueous cores, having the potential added advantages of biocompatibility, permeability, and stimulus-responsiveness. Endowing microrobots with deformability could allow them to navigate inside capillaries and cross barriers to finally reach the target site. In this study, we present a cost-effective method for fabricating core-shell structures without the use of organic solvents, surfactants, or extreme pH conditions unlike other techniques (e.g. Layer by Layer). The process begins with the dripping of a mixture of hydrogels, agarose and alginate, into a solution to gelate the drops into beads. After they are loaded with calcium ions at different concentrations, they are immersed in an alginate solution to form the shell. Finally, the beads are heated to let the agarose melt and diffuse out, leaving a liquid core. By varying the concentration of calcium ions, we obtain shells of different thicknesses. To estimate it, we have developed a method using the colour intensity from microscope images. This allowed us to observe that lowering the calcium ions concentration below a threshold does not lead to the formation of continuous shells. For higher concentrations, although the core may remain partially gelled, continuous shells successfully form. Therefore, our fabrication process could find applications in drug delivery, encapsulation systems, and microrobotics.</p>\",\"PeriodicalId\":74359,\"journal\":{\"name\":\"Open research Europe\",\"volume\":\"3 \",\"pages\":\"191\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11605173/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open research Europe\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12688/openreseurope.16723.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open research Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12688/openreseurope.16723.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传统的给药往往导致全身作用,因此需要高剂量并导致潜在的明显副作用。靶向递送,利用纳米颗粒等载体,旨在将药物释放到目标部位,但只有一小部分纳米颗粒真正到达目标部位。为了克服这个问题,人们提出了微型机器人,因为它们可以被引导到难以到达的地点,并在当地运送有效载荷。为了增强它们的功能,我们建议将微机器人制成具有水凝胶外壳和水芯的可变形胶囊,具有生物相容性,渗透性和刺激响应性的潜在附加优势。赋予微型机器人可变形性可以让它们在毛细血管内导航,并越过障碍,最终到达目标地点。在这项研究中,我们提出了一种成本效益高的方法来制造核壳结构,而不使用有机溶剂、表面活性剂或极端pH条件,不像其他技术(例如逐层)。这个过程首先是将水凝胶、琼脂糖和海藻酸盐的混合物滴入溶液中,使其凝胶化成小珠子。在装载了不同浓度的钙离子后,将它们浸入海藻酸盐溶液中形成外壳。最后,加热这些珠子,让琼脂糖融化并扩散出去,留下一个液体核。通过改变钙离子的浓度,我们得到了不同厚度的壳。为了估计它,我们开发了一种利用显微镜图像的颜色强度的方法。这使我们观察到,将钙离子浓度降低到阈值以下并不会导致连续壳的形成。对于较高的浓度,尽管核可能保持部分凝胶化,但连续的壳成功形成。因此,我们的制造工艺可以在药物输送、封装系统和微型机器人中找到应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fabrication of hydrogel mini-capsules as carrier systems.

Conventional drug administration often results in systemic action, thus needing high dosages and leading to potentially pronounced side effects. Targeted delivery, employing carriers like nanoparticles, aims to release drugs at a target site, but only a small fraction of nanoparticles actually reaches it. Microrobots have been proposed to overcome this issue since they can be guided to hard-to-reach sites and locally deliver payloads. To enhance their functionality, we propose microrobots made as deformable capsules with hydrogel shells and aqueous cores, having the potential added advantages of biocompatibility, permeability, and stimulus-responsiveness. Endowing microrobots with deformability could allow them to navigate inside capillaries and cross barriers to finally reach the target site. In this study, we present a cost-effective method for fabricating core-shell structures without the use of organic solvents, surfactants, or extreme pH conditions unlike other techniques (e.g. Layer by Layer). The process begins with the dripping of a mixture of hydrogels, agarose and alginate, into a solution to gelate the drops into beads. After they are loaded with calcium ions at different concentrations, they are immersed in an alginate solution to form the shell. Finally, the beads are heated to let the agarose melt and diffuse out, leaving a liquid core. By varying the concentration of calcium ions, we obtain shells of different thicknesses. To estimate it, we have developed a method using the colour intensity from microscope images. This allowed us to observe that lowering the calcium ions concentration below a threshold does not lead to the formation of continuous shells. For higher concentrations, although the core may remain partially gelled, continuous shells successfully form. Therefore, our fabrication process could find applications in drug delivery, encapsulation systems, and microrobotics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
期刊最新文献
Global language geography and language history: challenges and opportunities. Transformative social innovation and rural collaborative workspaces: assembling community economies in Austria and Greece. What's in it for citizen scientists? An Analysis of Participant Inclusivity in Citizen Science Projects in Advanced Physics Research. Atacama Large Aperture Submillimeter Telescope (AtLAST) science: Probing the transient and time-variable sky. How do we measure the costs, benefits, and harms of sharing data from biomedical studies? A protocol for a scoping review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1