N. F. T. Arifin, N. Yusof, M. R. Adam, M. A. B. Pauzan, N. A. H. M. Nordin, A. F. Ismail, F. Aziz, J. Jaafar, W. N. W. Salleh, S. Chelliapan
{"title":"以稻壳类石墨烯为吸附剂的咪唑酸骨架-8杂化纳米复合材料为中心设计优化室温储氢性能","authors":"N. F. T. Arifin, N. Yusof, M. R. Adam, M. A. B. Pauzan, N. A. H. M. Nordin, A. F. Ismail, F. Aziz, J. Jaafar, W. N. W. Salleh, S. Chelliapan","doi":"10.1007/s10450-024-00561-9","DOIUrl":null,"url":null,"abstract":"<div><p>Surface area and porosity are the main factors that affect hydrogen storage at room temperature. However, there are several external factors such as pressure of gas, reaction time and the amount of sample used during the process that might affect the performance of the hybrid nanocomposites towards hydrogen storage. In this study, central composite design (CCD) for response surface methodology (RSM) was used in determining the optimum conditions namely mass of sample (A), pressure of hydrogen gas (B) and reaction time (C) towards the hydrogen storage at room temperature. Rice husk derived graphene-like material (GRHC) was added into zeolitic imidazolate frameworks-8 (ZIF-8) to form a hybrid nanocomposite of ZIF-8/GRHC (ZGK) via<i> in-situ</i> synthesis. Due to synergistic effect, the surface area of ZGK (1065.51 m<sup>2</sup>/g) shows a great enhancement as 0.04 g GRHC was introduced as compared to pristine ZIF-8 (687.32 m<sup>2</sup>/g). On the other hand, the thermal stability of ZGK improved significantly as it can withstand up to 1000 ºC as compared to pristine GRHC and ZIF-8 respectively. Due to superior physicochemical properties of ZGK, it was chosen to undergo optimization of hydrogen storage at room temperature. From the confirmatory test which was run for three times, the optimum hydrogen storage at room temperature in ZGK was 1.95 wt.% when 0.50 g of ZGK was used; 15 bar of hydrogen gas was applied and the reaction time was 60 min as per suggested from the CCD.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"31 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of hydrogen storage at ambient temperature via central composite design using hybrid nanocomposites of zeolitic imidazolate frameworks-8 incorporated rice husk graphene-like as adsorbent\",\"authors\":\"N. F. T. Arifin, N. Yusof, M. R. Adam, M. A. B. Pauzan, N. A. H. M. Nordin, A. F. Ismail, F. Aziz, J. Jaafar, W. N. W. Salleh, S. Chelliapan\",\"doi\":\"10.1007/s10450-024-00561-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Surface area and porosity are the main factors that affect hydrogen storage at room temperature. However, there are several external factors such as pressure of gas, reaction time and the amount of sample used during the process that might affect the performance of the hybrid nanocomposites towards hydrogen storage. In this study, central composite design (CCD) for response surface methodology (RSM) was used in determining the optimum conditions namely mass of sample (A), pressure of hydrogen gas (B) and reaction time (C) towards the hydrogen storage at room temperature. Rice husk derived graphene-like material (GRHC) was added into zeolitic imidazolate frameworks-8 (ZIF-8) to form a hybrid nanocomposite of ZIF-8/GRHC (ZGK) via<i> in-situ</i> synthesis. Due to synergistic effect, the surface area of ZGK (1065.51 m<sup>2</sup>/g) shows a great enhancement as 0.04 g GRHC was introduced as compared to pristine ZIF-8 (687.32 m<sup>2</sup>/g). On the other hand, the thermal stability of ZGK improved significantly as it can withstand up to 1000 ºC as compared to pristine GRHC and ZIF-8 respectively. Due to superior physicochemical properties of ZGK, it was chosen to undergo optimization of hydrogen storage at room temperature. From the confirmatory test which was run for three times, the optimum hydrogen storage at room temperature in ZGK was 1.95 wt.% when 0.50 g of ZGK was used; 15 bar of hydrogen gas was applied and the reaction time was 60 min as per suggested from the CCD.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":458,\"journal\":{\"name\":\"Adsorption\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adsorption\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10450-024-00561-9\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10450-024-00561-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Optimization of hydrogen storage at ambient temperature via central composite design using hybrid nanocomposites of zeolitic imidazolate frameworks-8 incorporated rice husk graphene-like as adsorbent
Surface area and porosity are the main factors that affect hydrogen storage at room temperature. However, there are several external factors such as pressure of gas, reaction time and the amount of sample used during the process that might affect the performance of the hybrid nanocomposites towards hydrogen storage. In this study, central composite design (CCD) for response surface methodology (RSM) was used in determining the optimum conditions namely mass of sample (A), pressure of hydrogen gas (B) and reaction time (C) towards the hydrogen storage at room temperature. Rice husk derived graphene-like material (GRHC) was added into zeolitic imidazolate frameworks-8 (ZIF-8) to form a hybrid nanocomposite of ZIF-8/GRHC (ZGK) via in-situ synthesis. Due to synergistic effect, the surface area of ZGK (1065.51 m2/g) shows a great enhancement as 0.04 g GRHC was introduced as compared to pristine ZIF-8 (687.32 m2/g). On the other hand, the thermal stability of ZGK improved significantly as it can withstand up to 1000 ºC as compared to pristine GRHC and ZIF-8 respectively. Due to superior physicochemical properties of ZGK, it was chosen to undergo optimization of hydrogen storage at room temperature. From the confirmatory test which was run for three times, the optimum hydrogen storage at room temperature in ZGK was 1.95 wt.% when 0.50 g of ZGK was used; 15 bar of hydrogen gas was applied and the reaction time was 60 min as per suggested from the CCD.
期刊介绍:
The journal Adsorption provides authoritative information on adsorption and allied fields to scientists, engineers, and technologists throughout the world. The information takes the form of peer-reviewed articles, R&D notes, topical review papers, tutorial papers, book reviews, meeting announcements, and news.
Coverage includes fundamental and practical aspects of adsorption: mathematics, thermodynamics, chemistry, and physics, as well as processes, applications, models engineering, and equipment design.
Among the topics are Adsorbents: new materials, new synthesis techniques, characterization of structure and properties, and applications; Equilibria: novel theories or semi-empirical models, experimental data, and new measurement methods; Kinetics: new models, experimental data, and measurement methods. Processes: chemical, biochemical, environmental, and other applications, purification or bulk separation, fixed bed or moving bed systems, simulations, experiments, and design procedures.