吸附光催化去除亚甲基蓝和甲基橙染料的Ag@g-C3N4两性离子水凝胶的合成与表征

IF 3 4区 工程技术 Q3 CHEMISTRY, PHYSICAL Adsorption Pub Date : 2024-12-04 DOI:10.1007/s10450-024-00560-w
Jinze Wu, Jiale Yao, Xiping Zhu, Danying Zuo, Hongwei Zhang, Shuai Jiang, Hongjun Li
{"title":"吸附光催化去除亚甲基蓝和甲基橙染料的Ag@g-C3N4两性离子水凝胶的合成与表征","authors":"Jinze Wu,&nbsp;Jiale Yao,&nbsp;Xiping Zhu,&nbsp;Danying Zuo,&nbsp;Hongwei Zhang,&nbsp;Shuai Jiang,&nbsp;Hongjun Li","doi":"10.1007/s10450-024-00560-w","DOIUrl":null,"url":null,"abstract":"<div><p>Most hydrogels for dye treatment only have the adsorption ability for anionic or cationic dyes, while a few zwitterionic hydrogels that can adsorb both anionic and cationic dyes need a complicated regeneration process when they are reused. To prepare reusable zwitterionic adsorbent hydrogels, in this paper, a zwitterionic composite hydrogel with Ag@g-C<sub>3</sub>N<sub>4</sub> was prepared, which not only can adsorb both anionic and cationic dyes but also has photocatalytic degradation ability. The scanning electron microscopy images show that the optimum hydrogel has a large number of micro pores for dye adsorption. The adsorption capacity of the hydrogel achieves the highest in mixed dye concentration of 50 mg·L<sup>-1</sup> with pH value of 7–9. Benefiting from the synergistic effect of adsorption and photocatalytic degradation, the removal efficiency of methyl orange and methylene blue in mixed dyes was up to 93.86% and 91.80%, respectively. The photocatalytic activity trapping experiments showed that superoxide radicals as well as hydroxyl radicals played a major role in photocatalytic degradation. After 5 consecutive photocatalytic degradations, the removal ratio of the hydrogel for dyes was still above 80%, indicating good photocatalytic degradation and reusability properties. This research suggested the zwitterionic composite hydrogel has a promising prospect in removing dyes from wastewater treatment.</p></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"31 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and characterization of zwitterionic hydrogels with Ag@g-C3N4 for adsorption-photocatalytic removal of methylene blue and methyl orange dyes\",\"authors\":\"Jinze Wu,&nbsp;Jiale Yao,&nbsp;Xiping Zhu,&nbsp;Danying Zuo,&nbsp;Hongwei Zhang,&nbsp;Shuai Jiang,&nbsp;Hongjun Li\",\"doi\":\"10.1007/s10450-024-00560-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Most hydrogels for dye treatment only have the adsorption ability for anionic or cationic dyes, while a few zwitterionic hydrogels that can adsorb both anionic and cationic dyes need a complicated regeneration process when they are reused. To prepare reusable zwitterionic adsorbent hydrogels, in this paper, a zwitterionic composite hydrogel with Ag@g-C<sub>3</sub>N<sub>4</sub> was prepared, which not only can adsorb both anionic and cationic dyes but also has photocatalytic degradation ability. The scanning electron microscopy images show that the optimum hydrogel has a large number of micro pores for dye adsorption. The adsorption capacity of the hydrogel achieves the highest in mixed dye concentration of 50 mg·L<sup>-1</sup> with pH value of 7–9. Benefiting from the synergistic effect of adsorption and photocatalytic degradation, the removal efficiency of methyl orange and methylene blue in mixed dyes was up to 93.86% and 91.80%, respectively. The photocatalytic activity trapping experiments showed that superoxide radicals as well as hydroxyl radicals played a major role in photocatalytic degradation. After 5 consecutive photocatalytic degradations, the removal ratio of the hydrogel for dyes was still above 80%, indicating good photocatalytic degradation and reusability properties. This research suggested the zwitterionic composite hydrogel has a promising prospect in removing dyes from wastewater treatment.</p></div>\",\"PeriodicalId\":458,\"journal\":{\"name\":\"Adsorption\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adsorption\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10450-024-00560-w\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10450-024-00560-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

大多数用于染料处理的水凝胶只对阴离子或阳离子染料具有吸附能力,而少数既能吸附阴离子又能吸附阳离子染料的两性水凝胶在重复使用时需要复杂的再生过程。为了制备可重复使用的两性离子吸附剂水凝胶,本文制备了一种含有Ag@g-C3N4的两性离子复合水凝胶,该水凝胶不仅可以吸附阴离子和阳离子染料,而且具有光催化降解能力。扫描电镜结果表明,最佳的水凝胶具有大量的微孔吸附染料。在混合染料浓度为50 mg·L-1、pH值为7 ~ 9时,水凝胶的吸附量最高。得益于吸附和光催化降解的协同作用,混合染料中甲基橙和亚甲基蓝的去除率分别高达93.86%和91.80%。光催化活性捕获实验表明,超氧自由基和羟基自由基在光催化降解中起主要作用。连续5次光催化降解后,水凝胶对染料的去除率仍在80%以上,具有良好的光催化降解性能和重复使用性能。本研究表明两性离子复合水凝胶在废水脱除染料方面具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis and characterization of zwitterionic hydrogels with Ag@g-C3N4 for adsorption-photocatalytic removal of methylene blue and methyl orange dyes

Most hydrogels for dye treatment only have the adsorption ability for anionic or cationic dyes, while a few zwitterionic hydrogels that can adsorb both anionic and cationic dyes need a complicated regeneration process when they are reused. To prepare reusable zwitterionic adsorbent hydrogels, in this paper, a zwitterionic composite hydrogel with Ag@g-C3N4 was prepared, which not only can adsorb both anionic and cationic dyes but also has photocatalytic degradation ability. The scanning electron microscopy images show that the optimum hydrogel has a large number of micro pores for dye adsorption. The adsorption capacity of the hydrogel achieves the highest in mixed dye concentration of 50 mg·L-1 with pH value of 7–9. Benefiting from the synergistic effect of adsorption and photocatalytic degradation, the removal efficiency of methyl orange and methylene blue in mixed dyes was up to 93.86% and 91.80%, respectively. The photocatalytic activity trapping experiments showed that superoxide radicals as well as hydroxyl radicals played a major role in photocatalytic degradation. After 5 consecutive photocatalytic degradations, the removal ratio of the hydrogel for dyes was still above 80%, indicating good photocatalytic degradation and reusability properties. This research suggested the zwitterionic composite hydrogel has a promising prospect in removing dyes from wastewater treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Adsorption
Adsorption 工程技术-工程:化工
CiteScore
8.10
自引率
3.00%
发文量
18
审稿时长
2.4 months
期刊介绍: The journal Adsorption provides authoritative information on adsorption and allied fields to scientists, engineers, and technologists throughout the world. The information takes the form of peer-reviewed articles, R&D notes, topical review papers, tutorial papers, book reviews, meeting announcements, and news. Coverage includes fundamental and practical aspects of adsorption: mathematics, thermodynamics, chemistry, and physics, as well as processes, applications, models engineering, and equipment design. Among the topics are Adsorbents: new materials, new synthesis techniques, characterization of structure and properties, and applications; Equilibria: novel theories or semi-empirical models, experimental data, and new measurement methods; Kinetics: new models, experimental data, and measurement methods. Processes: chemical, biochemical, environmental, and other applications, purification or bulk separation, fixed bed or moving bed systems, simulations, experiments, and design procedures.
期刊最新文献
Investigation on the possibility of using the C2N semiconductor segment for adsorption and detection of some chlorofluorocarbons; a DFT survey DFT study of the adsorption behaviors of glycine, hystidine and phenylalanine amino acids on the novel Ag4 cluster modified BSe nanosheets: applications to bionanosensors Efficient calculation of the equilibrium composition in multicomponent batch adsorption with the steric mass action model Adsorption-biased characterization of porous solids Metal-loaded porous materials made from gold tailings: preparation and application in pollutants adsorption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1