油页岩微粉吸附去除水中2,4-二氯苯酚

IF 3 4区 工程技术 Q3 CHEMISTRY, PHYSICAL Adsorption Pub Date : 2024-12-04 DOI:10.1007/s10450-024-00570-8
Renáta Rauch, Éva Lukács, Miklós Molnár
{"title":"油页岩微粉吸附去除水中2,4-二氯苯酚","authors":"Renáta Rauch,&nbsp;Éva Lukács,&nbsp;Miklós Molnár","doi":"10.1007/s10450-024-00570-8","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigated the utilization of a unique oil shale as a sorbent for the removal of 2,4-dichlorophenol (2,4-DCP) from aqueous solutions. The influence of various process parameters, including the contact time, sorbent/liquid ratio, pH, and temperature, on the sorption process was evaluated. The results indicated the near-complete sorption of 2,4-DCP within 24 h. Favorable sorption was observed either at a sorbent/liquid ratio of 1:10, at elevated temperatures (40 °C), or at lower pH values (pH = 5) within the examined range. The maximum adsorption capacity at 40 °C has the potential to reach up to 20.0 µmol/g. Langmuir, Freundlich, and Sips isotherms were applied to the experimental data, but the Sips isotherm provided a superior fit, suggesting a heterogeneous sorption. Kinetic studies revealed a two-stage process: intraparticle diffusion dominated the initial stage, whereas other rate-limiting mechanisms may have contributed to the second stage. The first- and second-order kinetic models suggested a combined mechanism. According to the thermodynaic study, the adsorption process was spontaneous and exothermic, as indicated by the negative Gibbs free energy change and enthalpy change, which suggest that physisorption predominated. These findings demonstrate the potential of the investigated oil shale as an unconventional and cost-effective sorbent, potentially serving as a substitute for activated carbon in 2,4-DCP removal.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"31 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10450-024-00570-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Adsorptive removal of 2,4-dichlorophenol from aqueous solution using micronized oil shale\",\"authors\":\"Renáta Rauch,&nbsp;Éva Lukács,&nbsp;Miklós Molnár\",\"doi\":\"10.1007/s10450-024-00570-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigated the utilization of a unique oil shale as a sorbent for the removal of 2,4-dichlorophenol (2,4-DCP) from aqueous solutions. The influence of various process parameters, including the contact time, sorbent/liquid ratio, pH, and temperature, on the sorption process was evaluated. The results indicated the near-complete sorption of 2,4-DCP within 24 h. Favorable sorption was observed either at a sorbent/liquid ratio of 1:10, at elevated temperatures (40 °C), or at lower pH values (pH = 5) within the examined range. The maximum adsorption capacity at 40 °C has the potential to reach up to 20.0 µmol/g. Langmuir, Freundlich, and Sips isotherms were applied to the experimental data, but the Sips isotherm provided a superior fit, suggesting a heterogeneous sorption. Kinetic studies revealed a two-stage process: intraparticle diffusion dominated the initial stage, whereas other rate-limiting mechanisms may have contributed to the second stage. The first- and second-order kinetic models suggested a combined mechanism. According to the thermodynaic study, the adsorption process was spontaneous and exothermic, as indicated by the negative Gibbs free energy change and enthalpy change, which suggest that physisorption predominated. These findings demonstrate the potential of the investigated oil shale as an unconventional and cost-effective sorbent, potentially serving as a substitute for activated carbon in 2,4-DCP removal.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":458,\"journal\":{\"name\":\"Adsorption\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10450-024-00570-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adsorption\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10450-024-00570-8\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10450-024-00570-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究研究了利用一种独特的油页岩作为吸附剂,从水溶液中去除2,4-二氯苯酚(2,4- dcp)。考察了接触时间、吸液比、pH、温度等工艺参数对吸附过程的影响。结果表明,2,4- dcp在24 h内几乎完全吸附。在吸附剂/液比为1:10、高温(40°C)或较低的pH值(pH = 5)下均观察到良好的吸附。在40℃条件下的最大吸附量可达20.0µmol/g。Langmuir, Freundlich和Sips等温线应用于实验数据,但Sips等温线提供了更好的拟合,表明非均相吸附。动力学研究揭示了一个两阶段的过程:颗粒内扩散主导了初始阶段,而其他速率限制机制可能对第二阶段有所贡献。一级和二级动力学模型表明了一种复合机理。热力学研究表明,吸附过程为自发的放热过程,由负的吉布斯自由能变化和焓变可知,吸附过程以物理吸附为主。这些发现表明,所研究的油页岩具有作为一种非常规且经济高效的吸附剂的潜力,有可能成为活性炭去除2,4- dcp的替代品。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adsorptive removal of 2,4-dichlorophenol from aqueous solution using micronized oil shale

This study investigated the utilization of a unique oil shale as a sorbent for the removal of 2,4-dichlorophenol (2,4-DCP) from aqueous solutions. The influence of various process parameters, including the contact time, sorbent/liquid ratio, pH, and temperature, on the sorption process was evaluated. The results indicated the near-complete sorption of 2,4-DCP within 24 h. Favorable sorption was observed either at a sorbent/liquid ratio of 1:10, at elevated temperatures (40 °C), or at lower pH values (pH = 5) within the examined range. The maximum adsorption capacity at 40 °C has the potential to reach up to 20.0 µmol/g. Langmuir, Freundlich, and Sips isotherms were applied to the experimental data, but the Sips isotherm provided a superior fit, suggesting a heterogeneous sorption. Kinetic studies revealed a two-stage process: intraparticle diffusion dominated the initial stage, whereas other rate-limiting mechanisms may have contributed to the second stage. The first- and second-order kinetic models suggested a combined mechanism. According to the thermodynaic study, the adsorption process was spontaneous and exothermic, as indicated by the negative Gibbs free energy change and enthalpy change, which suggest that physisorption predominated. These findings demonstrate the potential of the investigated oil shale as an unconventional and cost-effective sorbent, potentially serving as a substitute for activated carbon in 2,4-DCP removal.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Adsorption
Adsorption 工程技术-工程:化工
CiteScore
8.10
自引率
3.00%
发文量
18
审稿时长
2.4 months
期刊介绍: The journal Adsorption provides authoritative information on adsorption and allied fields to scientists, engineers, and technologists throughout the world. The information takes the form of peer-reviewed articles, R&D notes, topical review papers, tutorial papers, book reviews, meeting announcements, and news. Coverage includes fundamental and practical aspects of adsorption: mathematics, thermodynamics, chemistry, and physics, as well as processes, applications, models engineering, and equipment design. Among the topics are Adsorbents: new materials, new synthesis techniques, characterization of structure and properties, and applications; Equilibria: novel theories or semi-empirical models, experimental data, and new measurement methods; Kinetics: new models, experimental data, and measurement methods. Processes: chemical, biochemical, environmental, and other applications, purification or bulk separation, fixed bed or moving bed systems, simulations, experiments, and design procedures.
期刊最新文献
Investigation on the possibility of using the C2N semiconductor segment for adsorption and detection of some chlorofluorocarbons; a DFT survey DFT study of the adsorption behaviors of glycine, hystidine and phenylalanine amino acids on the novel Ag4 cluster modified BSe nanosheets: applications to bionanosensors Efficient calculation of the equilibrium composition in multicomponent batch adsorption with the steric mass action model Adsorption-biased characterization of porous solids Metal-loaded porous materials made from gold tailings: preparation and application in pollutants adsorption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1