盘状盘齿骨的多色荧光活细胞成像。

IF 2 4区 生物学 Q4 CELL BIOLOGY Cell structure and function Pub Date : 2024-12-27 Epub Date: 2024-12-04 DOI:10.1247/csf.24065
Hidenori Hashimura, Satoshi Kuwana, Hibiki Nakagawa, Kenichi Abe, Tomoko Adachi, Toyoko Sugita, Shoko Fujishiro, Gen Honda, Satoshi Sawai
{"title":"盘状盘齿骨的多色荧光活细胞成像。","authors":"Hidenori Hashimura, Satoshi Kuwana, Hibiki Nakagawa, Kenichi Abe, Tomoko Adachi, Toyoko Sugita, Shoko Fujishiro, Gen Honda, Satoshi Sawai","doi":"10.1247/csf.24065","DOIUrl":null,"url":null,"abstract":"<p><p>The cellular slime mold Dictyostelium discoideum, a member of the Amoebozoa, has been extensively studied in cell and developmental biology. D. discoideum is unique in that they are genetically tractable, with a wealth of data accumulated over half a century of research. Fluorescence live-cell imaging of D. discoideum has greatly facilitated studies on fundamental topics, including cytokinesis, phagocytosis, and cell migration. Additionally, its unique life cycle places Dictyostelium at the forefront of understanding aggregative multicellularity, a recurring evolutionary trait found across the Opisthokonta and Amoebozoa clades. The use of multiple fluorescent proteins (FP) and labels with separable spectral properties is critical for tracking cells in aggregates and identifying co-occurring biomolecular events and factors that underlie the dynamics of the cytoskeleton, membrane lipids, second messengers, and gene expression. However, in D. discoideum, the number of frequently used FP species is limited to two or three. In this study, we explored the use of new-generation FP for practical 4- to 5-color fluorescence imaging of D. discoideum. We showed that the yellow fluorescent protein Achilles and the red fluorescent protein mScarlet-I both yield high signals and allow sensitive detection of rapid gene induction. The color palette was further expanded to include blue (mTagBFP2 and mTurquosie2), large Stoke-shift LSSmGFP, and near-infrared (miRFP670nano3) FPs, in addition to the HaloTag ligand SaraFluor 650T. Thus, we demonstrated the feasibility of deploying 4- and 5- color imaging of D. discoideum using conventional confocal microscopy.Key words: fluorescence imaging, organelle, cytoskeleton, small GTPase, Dictyostelium.</p>","PeriodicalId":9927,"journal":{"name":"Cell structure and function","volume":" ","pages":"135-153"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-color fluorescence live-cell imaging in Dictyostelium discoideum.\",\"authors\":\"Hidenori Hashimura, Satoshi Kuwana, Hibiki Nakagawa, Kenichi Abe, Tomoko Adachi, Toyoko Sugita, Shoko Fujishiro, Gen Honda, Satoshi Sawai\",\"doi\":\"10.1247/csf.24065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The cellular slime mold Dictyostelium discoideum, a member of the Amoebozoa, has been extensively studied in cell and developmental biology. D. discoideum is unique in that they are genetically tractable, with a wealth of data accumulated over half a century of research. Fluorescence live-cell imaging of D. discoideum has greatly facilitated studies on fundamental topics, including cytokinesis, phagocytosis, and cell migration. Additionally, its unique life cycle places Dictyostelium at the forefront of understanding aggregative multicellularity, a recurring evolutionary trait found across the Opisthokonta and Amoebozoa clades. The use of multiple fluorescent proteins (FP) and labels with separable spectral properties is critical for tracking cells in aggregates and identifying co-occurring biomolecular events and factors that underlie the dynamics of the cytoskeleton, membrane lipids, second messengers, and gene expression. However, in D. discoideum, the number of frequently used FP species is limited to two or three. In this study, we explored the use of new-generation FP for practical 4- to 5-color fluorescence imaging of D. discoideum. We showed that the yellow fluorescent protein Achilles and the red fluorescent protein mScarlet-I both yield high signals and allow sensitive detection of rapid gene induction. The color palette was further expanded to include blue (mTagBFP2 and mTurquosie2), large Stoke-shift LSSmGFP, and near-infrared (miRFP670nano3) FPs, in addition to the HaloTag ligand SaraFluor 650T. Thus, we demonstrated the feasibility of deploying 4- and 5- color imaging of D. discoideum using conventional confocal microscopy.Key words: fluorescence imaging, organelle, cytoskeleton, small GTPase, Dictyostelium.</p>\",\"PeriodicalId\":9927,\"journal\":{\"name\":\"Cell structure and function\",\"volume\":\" \",\"pages\":\"135-153\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell structure and function\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1247/csf.24065\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell structure and function","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1247/csf.24065","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/4 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细胞黏菌盘基钢霉(Dictyostelium disideum)是阿米巴原虫中的一员,在细胞生物学和发育生物学方面得到了广泛的研究。盘状棘球蚴的独特之处在于它们在基因上是可控制的,这是半个多世纪研究积累的丰富数据。disideum的荧光活细胞成像极大地促进了细胞分裂、吞噬和细胞迁移等基础课题的研究。此外,其独特的生命周期使盘基ostelium处于理解聚集多细胞性的前沿,这是在Opisthokonta和Amoebozoa分支中发现的一个反复出现的进化特征。使用多种荧光蛋白(FP)和具有可分离光谱特性的标记对于跟踪细胞聚集和识别共同发生的生物分子事件和因素至关重要,这些事件和因素是细胞骨架、膜脂、第二信使和基因表达动力学的基础。然而,在盘状棘球蚴中,经常使用的FP物种数量限制在2或3种。在这项研究中,我们探索了使用新一代FP对盘状棘球蚴进行实用的4- 5色荧光成像。我们发现黄色荧光蛋白Achilles和红色荧光蛋白mScarlet-I都能产生高信号,并能快速检测基因诱导。除HaloTag配体SaraFluor 650T外,还进一步扩展了调色板,包括蓝色(mTagBFP2和mTurquosie2)、大Stoke-shift LSSmGFP和近红外(miRFP670nano3) FPs。因此,我们证明了利用常规共聚焦显微镜对盘状棘球蚴进行四色和五色成像的可行性。关键词:荧光成像;细胞器;细胞骨架;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-color fluorescence live-cell imaging in Dictyostelium discoideum.

The cellular slime mold Dictyostelium discoideum, a member of the Amoebozoa, has been extensively studied in cell and developmental biology. D. discoideum is unique in that they are genetically tractable, with a wealth of data accumulated over half a century of research. Fluorescence live-cell imaging of D. discoideum has greatly facilitated studies on fundamental topics, including cytokinesis, phagocytosis, and cell migration. Additionally, its unique life cycle places Dictyostelium at the forefront of understanding aggregative multicellularity, a recurring evolutionary trait found across the Opisthokonta and Amoebozoa clades. The use of multiple fluorescent proteins (FP) and labels with separable spectral properties is critical for tracking cells in aggregates and identifying co-occurring biomolecular events and factors that underlie the dynamics of the cytoskeleton, membrane lipids, second messengers, and gene expression. However, in D. discoideum, the number of frequently used FP species is limited to two or three. In this study, we explored the use of new-generation FP for practical 4- to 5-color fluorescence imaging of D. discoideum. We showed that the yellow fluorescent protein Achilles and the red fluorescent protein mScarlet-I both yield high signals and allow sensitive detection of rapid gene induction. The color palette was further expanded to include blue (mTagBFP2 and mTurquosie2), large Stoke-shift LSSmGFP, and near-infrared (miRFP670nano3) FPs, in addition to the HaloTag ligand SaraFluor 650T. Thus, we demonstrated the feasibility of deploying 4- and 5- color imaging of D. discoideum using conventional confocal microscopy.Key words: fluorescence imaging, organelle, cytoskeleton, small GTPase, Dictyostelium.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell structure and function
Cell structure and function 生物-细胞生物学
CiteScore
2.50
自引率
0.00%
发文量
6
审稿时长
>12 weeks
期刊介绍: Cell Structure and Function is a fully peer-reviewed, fully Open Access journal. As the official English-language journal of the Japan Society for Cell Biology, it is published continuously online and biannually in print. Cell Structure and Function publishes important, original contributions in all areas of molecular and cell biology. The journal welcomes the submission of manuscripts on research areas such as the cell nucleus, chromosomes, and gene expression; the cytoskeleton and cell motility; cell adhesion and the extracellular matrix; cell growth, differentiation and death; signal transduction; the protein life cycle; membrane traffic; and organelles.
期刊最新文献
Tango1L but not Tango1S, Tali and cTAGE5 is required for export of type II collagen in medaka fish. The Role of Primary Cilia in Myoblast Proliferation and Cell Cycle Regulation during Myogenesis. Impact of physiological ionic strength and crowding on kinesin-1 motility. Live imaging of paracrine signaling: Advances in visualization and tracking techniques. Multi-color fluorescence live-cell imaging in Dictyostelium discoideum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1