{"title":"high -2促进缺氧条件下富含igfbp2微粒介导的胶质瘤干性和辐射抗性。","authors":"Ying Yang, Ting Sun, Xuefei Xue, Huiling Tan, Yanyan Li, Wei Yang","doi":"10.1007/s10495-024-02045-1","DOIUrl":null,"url":null,"abstract":"<p><p>Hypoxia can weaken the efficacy of radiotherapy and decrease tumor immunogenicity leading to immune escape. Thus, a thorough understanding of the key signaling pathways regulated by hypoxia is vitally important to enhance the radiosensitivity and improve immunosuppressive microenvironment of glioma. In this study, we verified the crucial role of hypoxia-inducible gene 2 (HIG-2) in lipid droplet (LD) accumulation and demonstrated that HIG-2 binding to frizzled class receptor 10 (FZD10) activated Wnt/β-catenin signaling pathway and increased its downstream insulin-like growth factor binding protein 2 (IGFBP2) level in microparticles (MPs) derived from glioma stem cells (GSCs), leading to decreased radiosensitivity and immunogenicity of MPs-receiving cells via the cross-talk between GSCs and non-stem glioma cells (GCs). These findings suggest that HIG-2 may be a promising target in glioma radiotherapy and/or immunotherapy.</p>","PeriodicalId":8062,"journal":{"name":"Apoptosis","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HIG-2 promotes glioma stemness and radioresistance mediated by IGFBP2-rich microparticles in hypoxia.\",\"authors\":\"Ying Yang, Ting Sun, Xuefei Xue, Huiling Tan, Yanyan Li, Wei Yang\",\"doi\":\"10.1007/s10495-024-02045-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hypoxia can weaken the efficacy of radiotherapy and decrease tumor immunogenicity leading to immune escape. Thus, a thorough understanding of the key signaling pathways regulated by hypoxia is vitally important to enhance the radiosensitivity and improve immunosuppressive microenvironment of glioma. In this study, we verified the crucial role of hypoxia-inducible gene 2 (HIG-2) in lipid droplet (LD) accumulation and demonstrated that HIG-2 binding to frizzled class receptor 10 (FZD10) activated Wnt/β-catenin signaling pathway and increased its downstream insulin-like growth factor binding protein 2 (IGFBP2) level in microparticles (MPs) derived from glioma stem cells (GSCs), leading to decreased radiosensitivity and immunogenicity of MPs-receiving cells via the cross-talk between GSCs and non-stem glioma cells (GCs). These findings suggest that HIG-2 may be a promising target in glioma radiotherapy and/or immunotherapy.</p>\",\"PeriodicalId\":8062,\"journal\":{\"name\":\"Apoptosis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Apoptosis\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10495-024-02045-1\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Apoptosis","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10495-024-02045-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
HIG-2 promotes glioma stemness and radioresistance mediated by IGFBP2-rich microparticles in hypoxia.
Hypoxia can weaken the efficacy of radiotherapy and decrease tumor immunogenicity leading to immune escape. Thus, a thorough understanding of the key signaling pathways regulated by hypoxia is vitally important to enhance the radiosensitivity and improve immunosuppressive microenvironment of glioma. In this study, we verified the crucial role of hypoxia-inducible gene 2 (HIG-2) in lipid droplet (LD) accumulation and demonstrated that HIG-2 binding to frizzled class receptor 10 (FZD10) activated Wnt/β-catenin signaling pathway and increased its downstream insulin-like growth factor binding protein 2 (IGFBP2) level in microparticles (MPs) derived from glioma stem cells (GSCs), leading to decreased radiosensitivity and immunogenicity of MPs-receiving cells via the cross-talk between GSCs and non-stem glioma cells (GCs). These findings suggest that HIG-2 may be a promising target in glioma radiotherapy and/or immunotherapy.
期刊介绍:
Apoptosis, a monthly international peer-reviewed journal, focuses on the rapid publication of innovative investigations into programmed cell death. The journal aims to stimulate research on the mechanisms and role of apoptosis in various human diseases, such as cancer, autoimmune disease, viral infection, AIDS, cardiovascular disease, neurodegenerative disorders, osteoporosis, and aging. The Editor-In-Chief acknowledges the importance of advancing clinical therapies for apoptosis-related diseases. Apoptosis considers Original Articles, Reviews, Short Communications, Letters to the Editor, and Book Reviews for publication.