DysRegNet:患者特异性和混杂因素意识失调网络对精确治疗的推断。

IF 6.8 2区 医学 Q1 PHARMACOLOGY & PHARMACY British Journal of Pharmacology Pub Date : 2024-12-04 DOI:10.1111/bph.17395
Johannes Kersting, Olga Lazareva, Zakaria Louadi, Jan Baumbach, David B Blumenthal, Markus List
{"title":"DysRegNet:患者特异性和混杂因素意识失调网络对精确治疗的推断。","authors":"Johannes Kersting, Olga Lazareva, Zakaria Louadi, Jan Baumbach, David B Blumenthal, Markus List","doi":"10.1111/bph.17395","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Gene regulation is frequently altered in diseases in unique and patient-specific ways. Hence, personalised strategies have been proposed to infer patient-specific gene-regulatory networks. However, existing methods do not scale well because they often require recomputing the entire network per sample. Moreover, they do not account for clinically important confounding factors such as age, sex or treatment history. Finally, a user-friendly implementation for the analysis and interpretation of such networks is missing.</p><p><strong>Experimental approach: </strong>We present DysRegNet, a method for inferring patient-specific regulatory alterations (dysregulations) from bulk gene expression profiles. We compared DysRegNet to the well-known SSN method, considering patient clustering, promoter methylation, mutations and cancer-stage data.</p><p><strong>Key results: </strong>We demonstrate that both SSN and DysRegNet produce interpretable and biologically meaningful networks across various cancer types. In contrast to SSN, DysRegNet can scale to arbitrary sample numbers and highlights the importance of confounders in network inference, revealing an age-specific bias in gene regulation in breast cancer. DysRegNet is available as a Python package (https://github.com/biomedbigdata/DysRegNet_package), and analysis results for 11 TCGA cancer types are available through an interactive web interface (https://exbio.wzw.tum.de/dysregnet).</p><p><strong>Conclusion and implications: </strong>DysRegNet introduces a novel bioinformatics tool enabling confounder-aware and patient-specific network analysis to unravel regulatory alteration in complex diseases.</p>","PeriodicalId":9262,"journal":{"name":"British Journal of Pharmacology","volume":" ","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DysRegNet: Patient-specific and confounder-aware dysregulated network inference towards precision therapeutics.\",\"authors\":\"Johannes Kersting, Olga Lazareva, Zakaria Louadi, Jan Baumbach, David B Blumenthal, Markus List\",\"doi\":\"10.1111/bph.17395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and purpose: </strong>Gene regulation is frequently altered in diseases in unique and patient-specific ways. Hence, personalised strategies have been proposed to infer patient-specific gene-regulatory networks. However, existing methods do not scale well because they often require recomputing the entire network per sample. Moreover, they do not account for clinically important confounding factors such as age, sex or treatment history. Finally, a user-friendly implementation for the analysis and interpretation of such networks is missing.</p><p><strong>Experimental approach: </strong>We present DysRegNet, a method for inferring patient-specific regulatory alterations (dysregulations) from bulk gene expression profiles. We compared DysRegNet to the well-known SSN method, considering patient clustering, promoter methylation, mutations and cancer-stage data.</p><p><strong>Key results: </strong>We demonstrate that both SSN and DysRegNet produce interpretable and biologically meaningful networks across various cancer types. In contrast to SSN, DysRegNet can scale to arbitrary sample numbers and highlights the importance of confounders in network inference, revealing an age-specific bias in gene regulation in breast cancer. DysRegNet is available as a Python package (https://github.com/biomedbigdata/DysRegNet_package), and analysis results for 11 TCGA cancer types are available through an interactive web interface (https://exbio.wzw.tum.de/dysregnet).</p><p><strong>Conclusion and implications: </strong>DysRegNet introduces a novel bioinformatics tool enabling confounder-aware and patient-specific network analysis to unravel regulatory alteration in complex diseases.</p>\",\"PeriodicalId\":9262,\"journal\":{\"name\":\"British Journal of Pharmacology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Journal of Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/bph.17395\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/bph.17395","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

背景和目的:基因调控在疾病中经常以独特和患者特异性的方式改变。因此,已经提出了个性化策略来推断患者特异性基因调控网络。然而,现有的方法不能很好地扩展,因为它们通常需要重新计算每个样本的整个网络。此外,它们没有考虑临床重要的混杂因素,如年龄、性别或治疗史。最后,缺少一个用户友好的实现来分析和解释这些网络。实验方法:我们提出DysRegNet,一种从大量基因表达谱推断患者特异性调节改变(失调)的方法。我们将DysRegNet与众所周知的SSN方法进行了比较,考虑了患者聚类、启动子甲基化、突变和癌症分期数据。关键结果:我们证明了SSN和DysRegNet在各种癌症类型中都产生了可解释的和具有生物学意义的网络。与SSN相比,DysRegNet可以扩展到任意样本数,并突出了网络推断中混杂因素的重要性,揭示了乳腺癌基因调控的年龄特异性偏差。DysRegNet是一个Python包(https://github.com/biomedbigdata/DysRegNet_package), 11种TCGA癌症类型的分析结果可通过交互式网络界面(https://exbio.wzw.tum.de/dysregnet).Conclusion)获得。其含义:DysRegNet引入了一种新的生物信息学工具,可以进行混杂因素感知和患者特异性网络分析,以揭示复杂疾病中的调控改变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DysRegNet: Patient-specific and confounder-aware dysregulated network inference towards precision therapeutics.

Background and purpose: Gene regulation is frequently altered in diseases in unique and patient-specific ways. Hence, personalised strategies have been proposed to infer patient-specific gene-regulatory networks. However, existing methods do not scale well because they often require recomputing the entire network per sample. Moreover, they do not account for clinically important confounding factors such as age, sex or treatment history. Finally, a user-friendly implementation for the analysis and interpretation of such networks is missing.

Experimental approach: We present DysRegNet, a method for inferring patient-specific regulatory alterations (dysregulations) from bulk gene expression profiles. We compared DysRegNet to the well-known SSN method, considering patient clustering, promoter methylation, mutations and cancer-stage data.

Key results: We demonstrate that both SSN and DysRegNet produce interpretable and biologically meaningful networks across various cancer types. In contrast to SSN, DysRegNet can scale to arbitrary sample numbers and highlights the importance of confounders in network inference, revealing an age-specific bias in gene regulation in breast cancer. DysRegNet is available as a Python package (https://github.com/biomedbigdata/DysRegNet_package), and analysis results for 11 TCGA cancer types are available through an interactive web interface (https://exbio.wzw.tum.de/dysregnet).

Conclusion and implications: DysRegNet introduces a novel bioinformatics tool enabling confounder-aware and patient-specific network analysis to unravel regulatory alteration in complex diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
15.40
自引率
12.30%
发文量
270
审稿时长
2.0 months
期刊介绍: The British Journal of Pharmacology (BJP) is a biomedical science journal offering comprehensive international coverage of experimental and translational pharmacology. It publishes original research, authoritative reviews, mini reviews, systematic reviews, meta-analyses, databases, letters to the Editor, and commentaries. Review articles, databases, systematic reviews, and meta-analyses are typically commissioned, but unsolicited contributions are also considered, either as standalone papers or part of themed issues. In addition to basic science research, BJP features translational pharmacology research, including proof-of-concept and early mechanistic studies in humans. While it generally does not publish first-in-man phase I studies or phase IIb, III, or IV studies, exceptions may be made under certain circumstances, particularly if results are combined with preclinical studies.
期刊最新文献
Clemastine attenuates subarachnoid haemorrhage pathology in a mouse model via Nrf2/SQSTM1-mediated autophagy. Issue Information An antisense oligonucleotide targeting the heat-shock protein HSPB5 as an innovative therapeutic approach in pulmonary fibrosis. 2-Hydroxyl hispolon reverses high glucose-induced endothelial progenitor cell dysfunction through the PI3K/Akt/eNOS and AMPK/HO-1 pathways. 7 I, a structurally modified sinomenine, exerts dual anti-GBM effects by inhibiting glioblastoma proliferation and inducing necroptosis which further mediates lysosomal cell death.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1