通过分析微波消融在不同微波频率和天线插入深度下的瘤内凋亡温度范围,确定最佳治疗条件。

IF 2.6 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES Science Progress Pub Date : 2024-10-01 DOI:10.1177/00368504241300855
Donghyuk Kim, Hyunjung Kim
{"title":"通过分析微波消融在不同微波频率和天线插入深度下的瘤内凋亡温度范围,确定最佳治疗条件。","authors":"Donghyuk Kim, Hyunjung Kim","doi":"10.1177/00368504241300855","DOIUrl":null,"url":null,"abstract":"<p><p>Microwave ablation is a therapeutic technique that kills tumors by inducing heat generation in biological tissue through microwave emissions. Microwave ablation is a minimally invasive treatment technique, which has the advantage of treating deeply located tumors with less bleeding than traditional surgical techniques. In this study, the therapeutic effect of microwave ablation was analyzed from the perspective of the temperature range where apoptosis and necrosis occur. Through the numerical modelling, the tumor located inside the liver tissue was implemented, and the temperature distribution in the hepatic tissue was calculated by varying value of the microwave frequency, microwave antenna input power, and the insertion depth of the microwave coaxial antenna. Microwave frequencies were selected as 915, and 2450 MHz, and the insertion depth of the microwave coaxial antenna was set at a distance difference between the tumor tip and the slot of 4 to 16 mm. In addition, the microwave antenna input power was set to a range of 0 to 60 W. Based on the obtained temperature distribution, the apoptotic variables, which are parameters specifically defined apoptosis ratios that can quantitatively verify the therapeutic effect, were calculated to derive the microwave ablation treatment condition that maximizes the therapeutic effect for each microwave frequency. Through the quantitative analysis of apoptotic variables, the optimal conditions for maximum therapeutic effect were derived for each microwave frequency analyzed in this study. For frequencies of 915 MHz, the optimal insertion depth of the antenna is 8 mm above the bottom of the tumor, and the optimal microwave input power is 40 W. For 2450 MHz, the optimal insertion depth and input power were found to be 4 mm and 4 W, respectively. Ultimately, it is expected that the results presented in this study will lead to more improved treatment of microwave ablation in practice.</p>","PeriodicalId":56061,"journal":{"name":"Science Progress","volume":"107 4","pages":"368504241300855"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11618935/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimal condition confirmation of treatment conditions through analysis of intratumoral apoptotic temperature range of microwave ablation for various microwave frequencies and antenna insertion depth.\",\"authors\":\"Donghyuk Kim, Hyunjung Kim\",\"doi\":\"10.1177/00368504241300855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microwave ablation is a therapeutic technique that kills tumors by inducing heat generation in biological tissue through microwave emissions. Microwave ablation is a minimally invasive treatment technique, which has the advantage of treating deeply located tumors with less bleeding than traditional surgical techniques. In this study, the therapeutic effect of microwave ablation was analyzed from the perspective of the temperature range where apoptosis and necrosis occur. Through the numerical modelling, the tumor located inside the liver tissue was implemented, and the temperature distribution in the hepatic tissue was calculated by varying value of the microwave frequency, microwave antenna input power, and the insertion depth of the microwave coaxial antenna. Microwave frequencies were selected as 915, and 2450 MHz, and the insertion depth of the microwave coaxial antenna was set at a distance difference between the tumor tip and the slot of 4 to 16 mm. In addition, the microwave antenna input power was set to a range of 0 to 60 W. Based on the obtained temperature distribution, the apoptotic variables, which are parameters specifically defined apoptosis ratios that can quantitatively verify the therapeutic effect, were calculated to derive the microwave ablation treatment condition that maximizes the therapeutic effect for each microwave frequency. Through the quantitative analysis of apoptotic variables, the optimal conditions for maximum therapeutic effect were derived for each microwave frequency analyzed in this study. For frequencies of 915 MHz, the optimal insertion depth of the antenna is 8 mm above the bottom of the tumor, and the optimal microwave input power is 40 W. For 2450 MHz, the optimal insertion depth and input power were found to be 4 mm and 4 W, respectively. Ultimately, it is expected that the results presented in this study will lead to more improved treatment of microwave ablation in practice.</p>\",\"PeriodicalId\":56061,\"journal\":{\"name\":\"Science Progress\",\"volume\":\"107 4\",\"pages\":\"368504241300855\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11618935/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Progress\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1177/00368504241300855\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Progress","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1177/00368504241300855","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

微波消融术是一种通过微波辐射在生物组织中诱导发热来杀死肿瘤的治疗技术。微波消融术是一种微创治疗技术,与传统手术技术相比,它具有治疗深部肿瘤且出血少的优点。本研究从发生细胞凋亡和坏死的温度范围角度分析微波消融的治疗效果。通过数值模拟,实现了肝脏组织内的肿瘤,通过微波频率、微波天线输入功率和微波同轴天线插入深度的变化值,计算出肝脏组织内的温度分布。微波频率分别为915、2450 MHz,微波同轴天线的插入深度设置在肿瘤尖端与缝隙距离差4 ~ 16 mm处。另外,微波天线的输入功率设置为0 ~ 60w。根据得到的温度分布,计算细胞凋亡变量,即可以定量验证治疗效果的具体定义细胞凋亡比率的参数,从而得出每个微波频率下治疗效果最大的微波消融治疗条件。通过对凋亡变量的定量分析,得出了本研究所分析的各微波频率下最大治疗效果的最佳条件。频率为915mhz时,天线的最佳插入深度为肿瘤底部上方8mm,最佳微波输入功率为40w。对于2450 MHz,最佳插入深度和输入功率分别为4 mm和4 W。最终,我们期望本研究的结果能够在实践中进一步改进微波消融的治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal condition confirmation of treatment conditions through analysis of intratumoral apoptotic temperature range of microwave ablation for various microwave frequencies and antenna insertion depth.

Microwave ablation is a therapeutic technique that kills tumors by inducing heat generation in biological tissue through microwave emissions. Microwave ablation is a minimally invasive treatment technique, which has the advantage of treating deeply located tumors with less bleeding than traditional surgical techniques. In this study, the therapeutic effect of microwave ablation was analyzed from the perspective of the temperature range where apoptosis and necrosis occur. Through the numerical modelling, the tumor located inside the liver tissue was implemented, and the temperature distribution in the hepatic tissue was calculated by varying value of the microwave frequency, microwave antenna input power, and the insertion depth of the microwave coaxial antenna. Microwave frequencies were selected as 915, and 2450 MHz, and the insertion depth of the microwave coaxial antenna was set at a distance difference between the tumor tip and the slot of 4 to 16 mm. In addition, the microwave antenna input power was set to a range of 0 to 60 W. Based on the obtained temperature distribution, the apoptotic variables, which are parameters specifically defined apoptosis ratios that can quantitatively verify the therapeutic effect, were calculated to derive the microwave ablation treatment condition that maximizes the therapeutic effect for each microwave frequency. Through the quantitative analysis of apoptotic variables, the optimal conditions for maximum therapeutic effect were derived for each microwave frequency analyzed in this study. For frequencies of 915 MHz, the optimal insertion depth of the antenna is 8 mm above the bottom of the tumor, and the optimal microwave input power is 40 W. For 2450 MHz, the optimal insertion depth and input power were found to be 4 mm and 4 W, respectively. Ultimately, it is expected that the results presented in this study will lead to more improved treatment of microwave ablation in practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Progress
Science Progress Multidisciplinary-Multidisciplinary
CiteScore
3.80
自引率
0.00%
发文量
119
期刊介绍: Science Progress has for over 100 years been a highly regarded review publication in science, technology and medicine. Its objective is to excite the readers'' interest in areas with which they may not be fully familiar but which could facilitate their interest, or even activity, in a cognate field.
期刊最新文献
Noninvasive prediction of coronary artery disease severity: Comparative analysis of electrocardiographic findings and risk factors with SYNTAX and Gensini score. Peak serum lactate as a robust predictor of imminent death in life-sustaining treatment decisions: A study of 73,927 patients. Remarkable results of energy consumption and CO2 emissions for gasoline and electric powered vehicle. Advantages of the standardized use of preoperative fascia iliaca block versus conventional analgesia in older adults with fragility hip fracture: A retrospective cohort study at two hospitals in Colombia. Lurker: Backdoor attack-based explainable rumor detection on online media.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1