Yanhui Bai, Honghui Li, Wengang Wang, Shufang Liu, Ning Zhang, Chun Zhang
{"title":"基于分布式并行计算的重载货运列车故障数据关联规则挖掘优化算法。","authors":"Yanhui Bai, Honghui Li, Wengang Wang, Shufang Liu, Ning Zhang, Chun Zhang","doi":"10.1177/00368504241301181","DOIUrl":null,"url":null,"abstract":"<p><p>With the continuous improvement in the efficiency of the heavy-haul railway freight transportation, the pressure on on-site maintenance is increasing. In-depth research on fault characteristics carries significant importance for fault scientific judgment and fault prevention. This study proposes an efficient association rule mining (ARM) algorithm, HM-RDHP, for analyzing fault data from heavy-haul railway freight trains. The algorithm introduces distributed parallel computing technology, integrating the MapReduce framework and HBase on the Hadoop platform to process large volumes of complex fault data efficiently. Experimental results show that the HM-RDHP algorithm can efficiently uncover hidden patterns and associations within the fault data of heavy-haul railway freight trains. The mined association rules provide a valuable reference model to aid in predictive maintenance and fault prevention strategies for freight train maintenance departments.</p>","PeriodicalId":56061,"journal":{"name":"Science Progress","volume":"107 4","pages":"368504241301181"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11618913/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimization algorithm of association rule mining for heavy-haul railway freight train fault data based on distributed parallel computing.\",\"authors\":\"Yanhui Bai, Honghui Li, Wengang Wang, Shufang Liu, Ning Zhang, Chun Zhang\",\"doi\":\"10.1177/00368504241301181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the continuous improvement in the efficiency of the heavy-haul railway freight transportation, the pressure on on-site maintenance is increasing. In-depth research on fault characteristics carries significant importance for fault scientific judgment and fault prevention. This study proposes an efficient association rule mining (ARM) algorithm, HM-RDHP, for analyzing fault data from heavy-haul railway freight trains. The algorithm introduces distributed parallel computing technology, integrating the MapReduce framework and HBase on the Hadoop platform to process large volumes of complex fault data efficiently. Experimental results show that the HM-RDHP algorithm can efficiently uncover hidden patterns and associations within the fault data of heavy-haul railway freight trains. The mined association rules provide a valuable reference model to aid in predictive maintenance and fault prevention strategies for freight train maintenance departments.</p>\",\"PeriodicalId\":56061,\"journal\":{\"name\":\"Science Progress\",\"volume\":\"107 4\",\"pages\":\"368504241301181\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11618913/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Progress\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1177/00368504241301181\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Progress","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1177/00368504241301181","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Optimization algorithm of association rule mining for heavy-haul railway freight train fault data based on distributed parallel computing.
With the continuous improvement in the efficiency of the heavy-haul railway freight transportation, the pressure on on-site maintenance is increasing. In-depth research on fault characteristics carries significant importance for fault scientific judgment and fault prevention. This study proposes an efficient association rule mining (ARM) algorithm, HM-RDHP, for analyzing fault data from heavy-haul railway freight trains. The algorithm introduces distributed parallel computing technology, integrating the MapReduce framework and HBase on the Hadoop platform to process large volumes of complex fault data efficiently. Experimental results show that the HM-RDHP algorithm can efficiently uncover hidden patterns and associations within the fault data of heavy-haul railway freight trains. The mined association rules provide a valuable reference model to aid in predictive maintenance and fault prevention strategies for freight train maintenance departments.
期刊介绍:
Science Progress has for over 100 years been a highly regarded review publication in science, technology and medicine. Its objective is to excite the readers'' interest in areas with which they may not be fully familiar but which could facilitate their interest, or even activity, in a cognate field.