{"title":"单细胞数据的深度学习训练动态分析。","authors":"","doi":"10.1038/s43588-024-00728-y","DOIUrl":null,"url":null,"abstract":"Inspired by recent approaches for natural language processing and computer vision, we developed Annotatability, a framework that analyzes deep neural network training dynamics to interpret pre-annotated single-cell and spatial omics data. Annotatability identified erroneous annotations and ambiguous cell states, inferred trajectories from binary labels, and revealed underlying biological signals.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 12","pages":"886-887"},"PeriodicalIF":12.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning training dynamics analysis for single-cell data\",\"authors\":\"\",\"doi\":\"10.1038/s43588-024-00728-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inspired by recent approaches for natural language processing and computer vision, we developed Annotatability, a framework that analyzes deep neural network training dynamics to interpret pre-annotated single-cell and spatial omics data. Annotatability identified erroneous annotations and ambiguous cell states, inferred trajectories from binary labels, and revealed underlying biological signals.\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":\"4 12\",\"pages\":\"886-887\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43588-024-00728-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00728-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Deep learning training dynamics analysis for single-cell data
Inspired by recent approaches for natural language processing and computer vision, we developed Annotatability, a framework that analyzes deep neural network training dynamics to interpret pre-annotated single-cell and spatial omics data. Annotatability identified erroneous annotations and ambiguous cell states, inferred trajectories from binary labels, and revealed underlying biological signals.