Kehan Chen , Ruoqi Zhang , Lin Meng , Xingyuan Zheng , Kun Wang , Huiqi Wang
{"title":"基于尺度变换分数阶振荡器故障特征放大的自适应GSR快速轴承诊断。","authors":"Kehan Chen , Ruoqi Zhang , Lin Meng , Xingyuan Zheng , Kun Wang , Huiqi Wang","doi":"10.1016/j.isatra.2024.11.044","DOIUrl":null,"url":null,"abstract":"<div><div>From the noise-assisted perspective of stochastic resonance (SR), fractional system has been adopted to enhance the diagnostic performance of mechanical faults by utilizing the previous state information in mechanical degradation process, but the computation is extremely time-consuming. To address this challenge, we develop a fast diagnosis method leveraging the mechanism of generalized SR (GSR)-based active energy conversion in fluctuating-damping fractional oscillator (FDFO). Through the analysis of system stationary response, we propose a theoretical index known as fault feature amplification (FFA), which effectively replaces the time-consuming numerical solution in multi-parameter optimization, leading to a remarkable reduction in the time complexity of the adaptive diagnosis algorithm. This improvement brings about significant benefits, notably simplifying the diagnosis flow. Based on the results of performance evaluation in diagnosing simulated bearing signals, the proposed method exhibits a comprehensive superiority in identifying ability and diagnosis efficiency. Finally, this method has been further validated in experimental diagnosis, especially for some challenging cases, providing strong support for engineering applications, particularly in the fast diagnosis of complex operating environments.</div></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"157 ","pages":"Pages 124-141"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The fast bearing diagnosis based on adaptive GSR of fault feature amplification in scale-transformed fractional oscillator\",\"authors\":\"Kehan Chen , Ruoqi Zhang , Lin Meng , Xingyuan Zheng , Kun Wang , Huiqi Wang\",\"doi\":\"10.1016/j.isatra.2024.11.044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>From the noise-assisted perspective of stochastic resonance (SR), fractional system has been adopted to enhance the diagnostic performance of mechanical faults by utilizing the previous state information in mechanical degradation process, but the computation is extremely time-consuming. To address this challenge, we develop a fast diagnosis method leveraging the mechanism of generalized SR (GSR)-based active energy conversion in fluctuating-damping fractional oscillator (FDFO). Through the analysis of system stationary response, we propose a theoretical index known as fault feature amplification (FFA), which effectively replaces the time-consuming numerical solution in multi-parameter optimization, leading to a remarkable reduction in the time complexity of the adaptive diagnosis algorithm. This improvement brings about significant benefits, notably simplifying the diagnosis flow. Based on the results of performance evaluation in diagnosing simulated bearing signals, the proposed method exhibits a comprehensive superiority in identifying ability and diagnosis efficiency. Finally, this method has been further validated in experimental diagnosis, especially for some challenging cases, providing strong support for engineering applications, particularly in the fast diagnosis of complex operating environments.</div></div>\",\"PeriodicalId\":14660,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\"157 \",\"pages\":\"Pages 124-141\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S001905782400555X\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001905782400555X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
The fast bearing diagnosis based on adaptive GSR of fault feature amplification in scale-transformed fractional oscillator
From the noise-assisted perspective of stochastic resonance (SR), fractional system has been adopted to enhance the diagnostic performance of mechanical faults by utilizing the previous state information in mechanical degradation process, but the computation is extremely time-consuming. To address this challenge, we develop a fast diagnosis method leveraging the mechanism of generalized SR (GSR)-based active energy conversion in fluctuating-damping fractional oscillator (FDFO). Through the analysis of system stationary response, we propose a theoretical index known as fault feature amplification (FFA), which effectively replaces the time-consuming numerical solution in multi-parameter optimization, leading to a remarkable reduction in the time complexity of the adaptive diagnosis algorithm. This improvement brings about significant benefits, notably simplifying the diagnosis flow. Based on the results of performance evaluation in diagnosing simulated bearing signals, the proposed method exhibits a comprehensive superiority in identifying ability and diagnosis efficiency. Finally, this method has been further validated in experimental diagnosis, especially for some challenging cases, providing strong support for engineering applications, particularly in the fast diagnosis of complex operating environments.
期刊介绍:
ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.