紫荆素在脓毒症相关急性肺损伤中减轻氧化应激、线粒体损伤、焦亡和调节小核仁RNA宿主基因1/DNA甲基转移酶1/microRNA-495轴。

IF 4.6 2区 医学 Q2 IMMUNOLOGY Inflammopharmacology Pub Date : 2025-03-01 Epub Date: 2024-12-06 DOI:10.1007/s10787-024-01609-6
Almaz Zaki, Mohd Mohsin, Salman Khan, Aman Khan, Shaniya Ahmad, Amit Verma, Shakir Ali, Tasneem Fatma, Mansoor Ali Syed
{"title":"紫荆素在脓毒症相关急性肺损伤中减轻氧化应激、线粒体损伤、焦亡和调节小核仁RNA宿主基因1/DNA甲基转移酶1/microRNA-495轴。","authors":"Almaz Zaki, Mohd Mohsin, Salman Khan, Aman Khan, Shaniya Ahmad, Amit Verma, Shakir Ali, Tasneem Fatma, Mansoor Ali Syed","doi":"10.1007/s10787-024-01609-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim of the study: </strong>This study examined vitexin's effect on sepsis-induced acute lung injury. We used network pharmacology and in vivo and in vitro experiments were performed to elucidate vitexin's role in preventing pyroptosis and regulating small nucleolar RNA host gene 1 (SNHG1)/DNA methyltransferase 1 (DNMT1)/microRNA-495 (miR-495 axis.</p><p><strong>Materials and methods: </strong>We developed an acute lung injury model using C57BL/6 mice and MLE-12 cells. Through a combination of network pharmacology and in vitro screening, vitexin was identified as the most promising anti-inflammatory compound. Multiple techniques such as western blotting, real-time PCR, Hematoxylin and eosin staining, immunohistochemistry, and TUNEL assay were used. Additionally, immunofluorescence, DCFDA and TMRE staining, flow cytometry, methylation-specific PCR, and gene transfection techniques were performed to elucidate vitexin's potential targets and underlying mechanisms.</p><p><strong>Results: </strong>Vitexin treatment significantly reduced lung damage, neutrophil infiltration, and inflammation while improving tight junction integrity. In LPS-treated RAW264.7 macrophages and a septic mouse BALF-induced MLE-12 cell injury model, vitexin demonstrated anti-inflammatory effects, promoted M2 macrophage polarization, and enhanced regenerative markers. It also decreased oxidative stress, mitigated apoptosis and pyroptosis, and improved mitochondrial function. Our research uncovered a novel epigenetic regulatory mechanism involving lncRNA SNHG1, DNMT1, and miR-495.</p><p><strong>Conclusion: </strong>Vitexin's ability to reduce inflammation, counteract oxidative stress, and modulate epigenetic processes. These findings underscore the promising role of vitexin as a treatment for ALI generated by sepsis. The SNHG1/miR-495 axis, which has been identified, represents a new target for future therapies in acute lung injury.</p>","PeriodicalId":13551,"journal":{"name":"Inflammopharmacology","volume":" ","pages":"1435-1454"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vitexin mitigates oxidative stress, mitochondrial damage, pyroptosis and regulates small nucleolar RNA host gene 1/DNA methyltransferase 1/microRNA-495 axis in sepsis-associated acute lung injury.\",\"authors\":\"Almaz Zaki, Mohd Mohsin, Salman Khan, Aman Khan, Shaniya Ahmad, Amit Verma, Shakir Ali, Tasneem Fatma, Mansoor Ali Syed\",\"doi\":\"10.1007/s10787-024-01609-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aim of the study: </strong>This study examined vitexin's effect on sepsis-induced acute lung injury. We used network pharmacology and in vivo and in vitro experiments were performed to elucidate vitexin's role in preventing pyroptosis and regulating small nucleolar RNA host gene 1 (SNHG1)/DNA methyltransferase 1 (DNMT1)/microRNA-495 (miR-495 axis.</p><p><strong>Materials and methods: </strong>We developed an acute lung injury model using C57BL/6 mice and MLE-12 cells. Through a combination of network pharmacology and in vitro screening, vitexin was identified as the most promising anti-inflammatory compound. Multiple techniques such as western blotting, real-time PCR, Hematoxylin and eosin staining, immunohistochemistry, and TUNEL assay were used. Additionally, immunofluorescence, DCFDA and TMRE staining, flow cytometry, methylation-specific PCR, and gene transfection techniques were performed to elucidate vitexin's potential targets and underlying mechanisms.</p><p><strong>Results: </strong>Vitexin treatment significantly reduced lung damage, neutrophil infiltration, and inflammation while improving tight junction integrity. In LPS-treated RAW264.7 macrophages and a septic mouse BALF-induced MLE-12 cell injury model, vitexin demonstrated anti-inflammatory effects, promoted M2 macrophage polarization, and enhanced regenerative markers. It also decreased oxidative stress, mitigated apoptosis and pyroptosis, and improved mitochondrial function. Our research uncovered a novel epigenetic regulatory mechanism involving lncRNA SNHG1, DNMT1, and miR-495.</p><p><strong>Conclusion: </strong>Vitexin's ability to reduce inflammation, counteract oxidative stress, and modulate epigenetic processes. These findings underscore the promising role of vitexin as a treatment for ALI generated by sepsis. The SNHG1/miR-495 axis, which has been identified, represents a new target for future therapies in acute lung injury.</p>\",\"PeriodicalId\":13551,\"journal\":{\"name\":\"Inflammopharmacology\",\"volume\":\" \",\"pages\":\"1435-1454\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inflammopharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10787-024-01609-6\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10787-024-01609-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

研究目的:探讨牡荆素对脓毒症致急性肺损伤的作用。我们利用网络药理学和体内外实验来阐明荆荆素在防止焦亡和调节小核仁RNA宿主基因1 (SNHG1)/DNA甲基转移酶1 (DNMT1)/microRNA-495 (miR-495轴)中的作用。材料和方法:采用C57BL/6小鼠和MLE-12细胞建立急性肺损伤模型。通过网络药理学和体外筛选相结合,确定牡荆素是最有前途的抗炎化合物。采用western blotting、real-time PCR、苏木精和伊红染色、免疫组织化学、TUNEL等多种技术。此外,通过免疫荧光、DCFDA和TMRE染色、流式细胞术、甲基化特异性PCR和基因转染技术来阐明牡荆素的潜在靶点和潜在机制。结果:牡荆素治疗显著减轻肺损伤、中性粒细胞浸润和炎症,同时改善紧密连接的完整性。在lps处理的RAW264.7巨噬细胞和脓毒症小鼠半胱氨酸诱导的MLE-12细胞损伤模型中,牡荆素显示出抗炎作用,促进M2巨噬细胞极化,增强再生标志物。降低氧化应激,减轻细胞凋亡和焦亡,改善线粒体功能。我们的研究揭示了一种涉及lncRNA SNHG1、DNMT1和miR-495的新的表观遗传调控机制。结论:牡荆素具有减轻炎症、抵抗氧化应激和调节表观遗传过程的能力。这些发现强调了牡荆素作为脓毒症引起的ALI治疗的有希望的作用。已经确定的SNHG1/miR-495轴代表了未来急性肺损伤治疗的新靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vitexin mitigates oxidative stress, mitochondrial damage, pyroptosis and regulates small nucleolar RNA host gene 1/DNA methyltransferase 1/microRNA-495 axis in sepsis-associated acute lung injury.

Aim of the study: This study examined vitexin's effect on sepsis-induced acute lung injury. We used network pharmacology and in vivo and in vitro experiments were performed to elucidate vitexin's role in preventing pyroptosis and regulating small nucleolar RNA host gene 1 (SNHG1)/DNA methyltransferase 1 (DNMT1)/microRNA-495 (miR-495 axis.

Materials and methods: We developed an acute lung injury model using C57BL/6 mice and MLE-12 cells. Through a combination of network pharmacology and in vitro screening, vitexin was identified as the most promising anti-inflammatory compound. Multiple techniques such as western blotting, real-time PCR, Hematoxylin and eosin staining, immunohistochemistry, and TUNEL assay were used. Additionally, immunofluorescence, DCFDA and TMRE staining, flow cytometry, methylation-specific PCR, and gene transfection techniques were performed to elucidate vitexin's potential targets and underlying mechanisms.

Results: Vitexin treatment significantly reduced lung damage, neutrophil infiltration, and inflammation while improving tight junction integrity. In LPS-treated RAW264.7 macrophages and a septic mouse BALF-induced MLE-12 cell injury model, vitexin demonstrated anti-inflammatory effects, promoted M2 macrophage polarization, and enhanced regenerative markers. It also decreased oxidative stress, mitigated apoptosis and pyroptosis, and improved mitochondrial function. Our research uncovered a novel epigenetic regulatory mechanism involving lncRNA SNHG1, DNMT1, and miR-495.

Conclusion: Vitexin's ability to reduce inflammation, counteract oxidative stress, and modulate epigenetic processes. These findings underscore the promising role of vitexin as a treatment for ALI generated by sepsis. The SNHG1/miR-495 axis, which has been identified, represents a new target for future therapies in acute lung injury.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inflammopharmacology
Inflammopharmacology IMMUNOLOGYTOXICOLOGY-TOXICOLOGY
CiteScore
8.00
自引率
3.40%
发文量
200
期刊介绍: Inflammopharmacology is the official publication of the Gastrointestinal Section of the International Union of Basic and Clinical Pharmacology (IUPHAR) and the Hungarian Experimental and Clinical Pharmacology Society (HECPS). Inflammopharmacology publishes papers on all aspects of inflammation and its pharmacological control emphasizing comparisons of (a) different inflammatory states, and (b) the actions, therapeutic efficacy and safety of drugs employed in the treatment of inflammatory conditions. The comparative aspects of the types of inflammatory conditions include gastrointestinal disease (e.g. ulcerative colitis, Crohn''s disease), parasitic diseases, toxicological manifestations of the effects of drugs and environmental agents, arthritic conditions, and inflammatory effects of injury or aging on skeletal muscle. The journal has seven main interest areas: -Drug-Disease Interactions - Conditional Pharmacology - i.e. where the condition (disease or stress state) influences the therapeutic response and side (adverse) effects from anti-inflammatory drugs. Mechanisms of drug-disease and drug disease interactions and the role of different stress states -Rheumatology - particular emphasis on methods of measurement of clinical response effects of new agents, adverse effects from anti-rheumatic drugs -Gastroenterology - with particular emphasis on animal and human models, mechanisms of mucosal inflammation and ulceration and effects of novel and established anti-ulcer, anti-inflammatory agents, or antiparasitic agents -Neuro-Inflammation and Pain - model systems, pharmacology of new analgesic agents and mechanisms of neuro-inflammation and pain -Novel drugs, natural products and nutraceuticals - and their effects on inflammatory processes, especially where there are indications of novel modes action compared with conventional drugs e.g. NSAIDs -Muscle-immune interactions during inflammation [...]
期刊最新文献
Exploring the anti-anaphylaxis potential of natural products: A Review. Modulation of the cognitive impairment associated with Alzheimer's disease by valproic acid: possible drug repurposing. The association between anti-inflammatory therapies and renal outcomes in patients with established cardiovascular disease or high cardiovascular risks: a meta-analysis of randomised controlled trials. Multifaceted therapeutic potentials of catalpol, an iridoid glycoside: an updated comprehensive review. Therapeutic effect of formononetin in 6-OHDA induced Parkinson disease in rats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1