载脂质体的可溶微针贴剂用于更有效的皮内乙肝疫苗抗原递送。

IF 5.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY International Journal of Pharmaceutics Pub Date : 2025-01-25 DOI:10.1016/j.ijpharm.2024.125023
Ping Wen , Yunyang Wang , Chenghao Zhang , Peng He , Zhuming Lin , Zhongyu Hu , Weiyue Lu
{"title":"载脂质体的可溶微针贴剂用于更有效的皮内乙肝疫苗抗原递送。","authors":"Ping Wen ,&nbsp;Yunyang Wang ,&nbsp;Chenghao Zhang ,&nbsp;Peng He ,&nbsp;Zhuming Lin ,&nbsp;Zhongyu Hu ,&nbsp;Weiyue Lu","doi":"10.1016/j.ijpharm.2024.125023","DOIUrl":null,"url":null,"abstract":"<div><div>The aim of this study was to improve the efficacy of Hepatitis B surface antigen (HBsAg) vaccination via liposome-loaded dissolvable microneedle (Lipo-dMN) patches. HBsAg liposomes were prepared using the thin-film hydration method and subsequently incorporated into dissolvable microneedle patches via a pre-vacuum approach. Liposomes, dissolvable microneedle patches (dMN), and Lipo-dMN were characterized for encapsulation efficiency, mechanical properties, morphology, skin insertion, in vitro release, cellular uptake, and <em>in vivo</em> vaccination studies. The HBsAg was encapsulated into liposomes with encapsulation efficiencies around 50 %, particle size around 160 nm, and zeta potential around −20 mV. HBsAg can maintain its activity during the preparation of dMN and Lipo-dMN. The intact pyramid microneedle has a sharp end and strong mechanical properties that allow easy insertion into the <em>ex vivo</em> pig skin. The dMN and Lipo-dMN, with a mechanical property of 1.6 N, readily penetrate the epidermis and release the HBsAg and HBsAg liposome to modulate the immune response. A comprehensive comparison of HBsAg subcutaneous injection and intradermal delivery of HBsAg and HBsAg liposome by dMN revealed different levels of anti-HBsAg IgG antibody. Inoculation with dMN and Lipo-dMN resulted in significantly higher levels of anti-HBsAg IgG antibodies (p &lt; 0.01) compared to subcutaneous injection of HBsAg. In addition, we found that IgG levels increased significantly (P &lt; 0.05) with increased dose of subcutaneous injection of HBsAg and intradermal delivery of dMN, but the opposite effect was observed in Lipo-dMN. The possible mechanism for this observation may be the increased cellular uptake of liposomes by BMDCs upon long-term incubation. In summary, this study presents a promising approach to enhance HBsAg vaccination efficacy through the synergistic combination of liposomes and dissolvable microneedles at reduced vaccine doses.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":"669 ","pages":"Article 125023"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liposome-loaded dissolvable microneedle patches for more efficient intradermal antigen delivery of Hepatitis B vaccine\",\"authors\":\"Ping Wen ,&nbsp;Yunyang Wang ,&nbsp;Chenghao Zhang ,&nbsp;Peng He ,&nbsp;Zhuming Lin ,&nbsp;Zhongyu Hu ,&nbsp;Weiyue Lu\",\"doi\":\"10.1016/j.ijpharm.2024.125023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The aim of this study was to improve the efficacy of Hepatitis B surface antigen (HBsAg) vaccination via liposome-loaded dissolvable microneedle (Lipo-dMN) patches. HBsAg liposomes were prepared using the thin-film hydration method and subsequently incorporated into dissolvable microneedle patches via a pre-vacuum approach. Liposomes, dissolvable microneedle patches (dMN), and Lipo-dMN were characterized for encapsulation efficiency, mechanical properties, morphology, skin insertion, in vitro release, cellular uptake, and <em>in vivo</em> vaccination studies. The HBsAg was encapsulated into liposomes with encapsulation efficiencies around 50 %, particle size around 160 nm, and zeta potential around −20 mV. HBsAg can maintain its activity during the preparation of dMN and Lipo-dMN. The intact pyramid microneedle has a sharp end and strong mechanical properties that allow easy insertion into the <em>ex vivo</em> pig skin. The dMN and Lipo-dMN, with a mechanical property of 1.6 N, readily penetrate the epidermis and release the HBsAg and HBsAg liposome to modulate the immune response. A comprehensive comparison of HBsAg subcutaneous injection and intradermal delivery of HBsAg and HBsAg liposome by dMN revealed different levels of anti-HBsAg IgG antibody. Inoculation with dMN and Lipo-dMN resulted in significantly higher levels of anti-HBsAg IgG antibodies (p &lt; 0.01) compared to subcutaneous injection of HBsAg. In addition, we found that IgG levels increased significantly (P &lt; 0.05) with increased dose of subcutaneous injection of HBsAg and intradermal delivery of dMN, but the opposite effect was observed in Lipo-dMN. The possible mechanism for this observation may be the increased cellular uptake of liposomes by BMDCs upon long-term incubation. In summary, this study presents a promising approach to enhance HBsAg vaccination efficacy through the synergistic combination of liposomes and dissolvable microneedles at reduced vaccine doses.</div></div>\",\"PeriodicalId\":14187,\"journal\":{\"name\":\"International Journal of Pharmaceutics\",\"volume\":\"669 \",\"pages\":\"Article 125023\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378517324012572\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378517324012572","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是通过脂质体负载的可溶微针(lipom - dmn)贴剂提高乙型肝炎表面抗原(HBsAg)疫苗接种的效果。采用薄膜水化法制备HBsAg脂质体,并通过预真空方法将其掺入可溶解的微针贴片中。脂质体、可溶微针贴剂(dMN)和lipop -dMN的包封效率、机械性能、形态、皮肤插入、体外释放、细胞摄取和体内疫苗接种研究均被表征。将HBsAg包封在脂质体中,包封效率约为50% %,粒径约为160 nm, zeta电位约为-20 mV。HBsAg在dMN和lipoo -dMN制备过程中保持活性。完整的金字塔微针具有锋利的末端和强大的机械性能,可以轻松插入离体猪皮肤。dMN和lipop -dMN的力学性能为1.6 N,容易穿透表皮,释放HBsAg和HBsAg脂质体,调节免疫反应。综合比较经dMN皮内给药和皮下注射的HBsAg及脂质体,发现其抗HBsAg IgG抗体水平不同。接种dMN和lipop -dMN可显著提高抗hbsag IgG抗体水平(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Liposome-loaded dissolvable microneedle patches for more efficient intradermal antigen delivery of Hepatitis B vaccine
The aim of this study was to improve the efficacy of Hepatitis B surface antigen (HBsAg) vaccination via liposome-loaded dissolvable microneedle (Lipo-dMN) patches. HBsAg liposomes were prepared using the thin-film hydration method and subsequently incorporated into dissolvable microneedle patches via a pre-vacuum approach. Liposomes, dissolvable microneedle patches (dMN), and Lipo-dMN were characterized for encapsulation efficiency, mechanical properties, morphology, skin insertion, in vitro release, cellular uptake, and in vivo vaccination studies. The HBsAg was encapsulated into liposomes with encapsulation efficiencies around 50 %, particle size around 160 nm, and zeta potential around −20 mV. HBsAg can maintain its activity during the preparation of dMN and Lipo-dMN. The intact pyramid microneedle has a sharp end and strong mechanical properties that allow easy insertion into the ex vivo pig skin. The dMN and Lipo-dMN, with a mechanical property of 1.6 N, readily penetrate the epidermis and release the HBsAg and HBsAg liposome to modulate the immune response. A comprehensive comparison of HBsAg subcutaneous injection and intradermal delivery of HBsAg and HBsAg liposome by dMN revealed different levels of anti-HBsAg IgG antibody. Inoculation with dMN and Lipo-dMN resulted in significantly higher levels of anti-HBsAg IgG antibodies (p < 0.01) compared to subcutaneous injection of HBsAg. In addition, we found that IgG levels increased significantly (P < 0.05) with increased dose of subcutaneous injection of HBsAg and intradermal delivery of dMN, but the opposite effect was observed in Lipo-dMN. The possible mechanism for this observation may be the increased cellular uptake of liposomes by BMDCs upon long-term incubation. In summary, this study presents a promising approach to enhance HBsAg vaccination efficacy through the synergistic combination of liposomes and dissolvable microneedles at reduced vaccine doses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.70
自引率
8.60%
发文量
951
审稿时长
72 days
期刊介绍: The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.
期刊最新文献
Follicle-stimulating hormone peptide-conjugated liposomes in the treatment of epithelial ovarian cancer through the induction of M2-to-M1 macrophage repolarization. Harnessing the power of inorganic nanoparticles for the management of TNBC. Stability and recrystallization of amorphous solid dispersions prepared by hot-melt extrusion and spray drying. Targeted nasal delivery of LNP-mRNAs aerosolised by Rayleigh breakup technology. Challenges and opportunities in targeting epigenetic mechanisms for pulmonary arterial hypertension treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1