抗SARS-Cov-2中和抗体DZIF-10c的半机械群体药代动力学建模:预测吸入和静脉给药后的全身和肺部暴露

IF 2.2 4区 医学 Q3 PHARMACOLOGY & PHARMACY Journal of Pharmacokinetics and Pharmacodynamics Pub Date : 2024-12-05 DOI:10.1007/s10928-024-09947-2
Sree Kurup, Nieves Velez de Mendizabal, Stephan Becker, Erica Bolella, Dorothy De Sousa, Gerd Fätkenheuer, Henning Gruell, Florian Klein, Jakob J Malin, Ulrike Schmid, Julia Korell
{"title":"抗SARS-Cov-2中和抗体DZIF-10c的半机械群体药代动力学建模:预测吸入和静脉给药后的全身和肺部暴露","authors":"Sree Kurup, Nieves Velez de Mendizabal, Stephan Becker, Erica Bolella, Dorothy De Sousa, Gerd Fätkenheuer, Henning Gruell, Florian Klein, Jakob J Malin, Ulrike Schmid, Julia Korell","doi":"10.1007/s10928-024-09947-2","DOIUrl":null,"url":null,"abstract":"<p><p>DZIF-10c (BI 767551) is a recombinant human monoclonal antibody of the IgG1 kappa isotype. It acts as a SARS-CoV-2 neutralizing antibody. DZIF-10c has been developed for both systemic exposure by intravenous infusion as well as for specific exposure to the respiratory tract by application as an inhaled aerosol generated by a nebulizer. An integrated preclinical/clinical semi-mechanistic population pharmacokinetic model was developed to characterize the exposure profile of DZIF-10c in the systemic circulation and lungs. To inform and reduce uncertainty around exposure in the lungs following different methods of dosing, preclinical cynomolgus monkey data was combined with human data using allometric scaling principles. Human serum concentrations of DZIF-10c from two clinical trials were combined with serum/plasma and lung epithelial lining fluid (ELF) concentrations from three preclinical studies to characterize the relationship between dosing, serum/plasma, and lung exposure. The final model was used to predict exposure in the lungs following different routes of administration. Simulations showed that inhalation provides immediate and relevant exposure in the lung ELF at a much lower dose compared with an infusion. Combining inhalation with intravenous therapy results in high and sustained DZIF-10c exposure in the lungs and systemic circulation, thereby combining the benefits of both routes of administration. By combining preclinical data with clinical data (via allometric scaling principles), the developed population pharmacokinetic model reduced uncertainty around exposure in the lungs allowing evaluation of alternative dosing strategies to achieve the desired concentrations of DZIF-10c in human lungs.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":"52 1","pages":"3"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11621205/pdf/","citationCount":"0","resultStr":"{\"title\":\"Semi-mechanistic population pharmacokinetic modeling of DZIF-10c, a neutralizing antibody against SARS-Cov-2: predicting systemic and lung exposure following inhaled and intravenous administration.\",\"authors\":\"Sree Kurup, Nieves Velez de Mendizabal, Stephan Becker, Erica Bolella, Dorothy De Sousa, Gerd Fätkenheuer, Henning Gruell, Florian Klein, Jakob J Malin, Ulrike Schmid, Julia Korell\",\"doi\":\"10.1007/s10928-024-09947-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>DZIF-10c (BI 767551) is a recombinant human monoclonal antibody of the IgG1 kappa isotype. It acts as a SARS-CoV-2 neutralizing antibody. DZIF-10c has been developed for both systemic exposure by intravenous infusion as well as for specific exposure to the respiratory tract by application as an inhaled aerosol generated by a nebulizer. An integrated preclinical/clinical semi-mechanistic population pharmacokinetic model was developed to characterize the exposure profile of DZIF-10c in the systemic circulation and lungs. To inform and reduce uncertainty around exposure in the lungs following different methods of dosing, preclinical cynomolgus monkey data was combined with human data using allometric scaling principles. Human serum concentrations of DZIF-10c from two clinical trials were combined with serum/plasma and lung epithelial lining fluid (ELF) concentrations from three preclinical studies to characterize the relationship between dosing, serum/plasma, and lung exposure. The final model was used to predict exposure in the lungs following different routes of administration. Simulations showed that inhalation provides immediate and relevant exposure in the lung ELF at a much lower dose compared with an infusion. Combining inhalation with intravenous therapy results in high and sustained DZIF-10c exposure in the lungs and systemic circulation, thereby combining the benefits of both routes of administration. By combining preclinical data with clinical data (via allometric scaling principles), the developed population pharmacokinetic model reduced uncertainty around exposure in the lungs allowing evaluation of alternative dosing strategies to achieve the desired concentrations of DZIF-10c in human lungs.</p>\",\"PeriodicalId\":16851,\"journal\":{\"name\":\"Journal of Pharmacokinetics and Pharmacodynamics\",\"volume\":\"52 1\",\"pages\":\"3\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11621205/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pharmacokinetics and Pharmacodynamics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10928-024-09947-2\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacokinetics and Pharmacodynamics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10928-024-09947-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

DZIF-10c (BI 767551)是IgG1 kappa同型的重组人单克隆抗体。它作为一种SARS-CoV-2中和抗体。DZIF-10c既可用于静脉输注的全身暴露,也可用于通过喷雾器产生的吸入气溶胶应用于呼吸道的特定暴露。建立了一个综合临床前/临床半机械人群药代动力学模型,以表征DZIF-10c在体循环和肺部的暴露谱。为了了解和减少不同给药方法对肺部暴露的不确定性,使用异速缩放原理将临床前食蟹猴数据与人类数据相结合。将两项临床试验的人血清DZIF-10c浓度与三项临床前研究的血清/血浆和肺上皮衬里液(ELF)浓度相结合,以表征剂量、血清/血浆和肺暴露之间的关系。最后的模型用于预测不同给药途径对肺部的暴露。模拟结果表明,与输注相比,吸入能以低得多的剂量立即暴露在肺ELF中。吸入与静脉治疗相结合可导致DZIF-10c在肺部和体循环中的高且持续暴露,从而结合两种给药途径的益处。通过结合临床前数据和临床数据(通过异速缩放原则),开发的人群药代动力学模型减少了肺部暴露的不确定性,从而可以评估替代给药策略,以达到人体肺部所需的DZIF-10c浓度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Semi-mechanistic population pharmacokinetic modeling of DZIF-10c, a neutralizing antibody against SARS-Cov-2: predicting systemic and lung exposure following inhaled and intravenous administration.

DZIF-10c (BI 767551) is a recombinant human monoclonal antibody of the IgG1 kappa isotype. It acts as a SARS-CoV-2 neutralizing antibody. DZIF-10c has been developed for both systemic exposure by intravenous infusion as well as for specific exposure to the respiratory tract by application as an inhaled aerosol generated by a nebulizer. An integrated preclinical/clinical semi-mechanistic population pharmacokinetic model was developed to characterize the exposure profile of DZIF-10c in the systemic circulation and lungs. To inform and reduce uncertainty around exposure in the lungs following different methods of dosing, preclinical cynomolgus monkey data was combined with human data using allometric scaling principles. Human serum concentrations of DZIF-10c from two clinical trials were combined with serum/plasma and lung epithelial lining fluid (ELF) concentrations from three preclinical studies to characterize the relationship between dosing, serum/plasma, and lung exposure. The final model was used to predict exposure in the lungs following different routes of administration. Simulations showed that inhalation provides immediate and relevant exposure in the lung ELF at a much lower dose compared with an infusion. Combining inhalation with intravenous therapy results in high and sustained DZIF-10c exposure in the lungs and systemic circulation, thereby combining the benefits of both routes of administration. By combining preclinical data with clinical data (via allometric scaling principles), the developed population pharmacokinetic model reduced uncertainty around exposure in the lungs allowing evaluation of alternative dosing strategies to achieve the desired concentrations of DZIF-10c in human lungs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
4.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Broadly speaking, the Journal of Pharmacokinetics and Pharmacodynamics covers the area of pharmacometrics. The journal is devoted to illustrating the importance of pharmacokinetics, pharmacodynamics, and pharmacometrics in drug development, clinical care, and the understanding of drug action. The journal publishes on a variety of topics related to pharmacometrics, including, but not limited to, clinical, experimental, and theoretical papers examining the kinetics of drug disposition and effects of drug action in humans, animals, in vitro, or in silico; modeling and simulation methodology, including optimal design; precision medicine; systems pharmacology; and mathematical pharmacology (including computational biology, bioengineering, and biophysics related to pharmacology, pharmacokinetics, orpharmacodynamics). Clinical papers that include population pharmacokinetic-pharmacodynamic relationships are welcome. The journal actively invites and promotes up-and-coming areas of pharmacometric research, such as real-world evidence, quality of life analyses, and artificial intelligence. The Journal of Pharmacokinetics and Pharmacodynamics is an official journal of the International Society of Pharmacometrics.
期刊最新文献
Defining preclinical efficacy with the DNAPK inhibitor AZD7648 in combination with olaparib: a minimal systems pharmacokinetic-pharmacodynamic model. Reliability of in vitro data for the mechanistic prediction of brain extracellular fluid pharmacokinetics of P-glycoprotein substrates in vivo; are we scaling correctly? Quantifying natural amyloid plaque accumulation in the continuum of Alzheimer's disease using ADNI. Stronger together: a cross-SIG perspective on improving drug development. A physiologically-based quantitative systems pharmacology model for mechanistic understanding of the response to alogliptin and its application in patients with renal impairment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1