Motoya Suzuki, Dapeng Zhao, Genti Toyokuni, Ryota Takagi
{"title":"来自海底S-net资料的东日本弧构造非均质性远震证据","authors":"Motoya Suzuki, Dapeng Zhao, Genti Toyokuni, Ryota Takagi","doi":"10.1016/j.tecto.2024.230579","DOIUrl":null,"url":null,"abstract":"We measure and analyze 4381 P-wave and 4307 S-wave arrival times of 48 teleseismic events recorded at 150 stations of a permanent seafloor seismic network (S-net) installed in the outer-rise and forearc region off East Japan. The obtained relative travel-time residuals amounting to ∼3 s at the S-net stations are generally negative on the incoming Pacific and Philippine Sea plates and positive on the continental Okhotsk plate, which reflect high and low seismic velocities, respectively. This pattern is generally consistent with previous results on the seismic velocity structure of the crust and upper mantle beneath the East Japan forearc and the outer-rise area. Large early arrivals (∼2.0 s) appear in the southern part of the S-net for the teleseismic events in the southwestern direction, which are mainly due to southwestward steepening of the subducting Pacific slab beneath Kanto. In the study region, the Pacific slab is the most significant anomaly with a thickness of ∼90 km and a seismic velocity of 5–6 % higher than that of the surrounding mantle. Early arrivals (∼1.5 s) also appear at the S-net stations off South Hokkaido, which are caused by northwestward steepening of the Pacific slab beneath the Tohoku-Hokkaido junction area. These results shed new light on the structural heterogeneity and subduction dynamics of the East Japan arc.","PeriodicalId":22257,"journal":{"name":"Tectonophysics","volume":"22 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Teleseismic evidence for structural heterogeneity in East Japan forearc from seafloor S-net data\",\"authors\":\"Motoya Suzuki, Dapeng Zhao, Genti Toyokuni, Ryota Takagi\",\"doi\":\"10.1016/j.tecto.2024.230579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We measure and analyze 4381 P-wave and 4307 S-wave arrival times of 48 teleseismic events recorded at 150 stations of a permanent seafloor seismic network (S-net) installed in the outer-rise and forearc region off East Japan. The obtained relative travel-time residuals amounting to ∼3 s at the S-net stations are generally negative on the incoming Pacific and Philippine Sea plates and positive on the continental Okhotsk plate, which reflect high and low seismic velocities, respectively. This pattern is generally consistent with previous results on the seismic velocity structure of the crust and upper mantle beneath the East Japan forearc and the outer-rise area. Large early arrivals (∼2.0 s) appear in the southern part of the S-net for the teleseismic events in the southwestern direction, which are mainly due to southwestward steepening of the subducting Pacific slab beneath Kanto. In the study region, the Pacific slab is the most significant anomaly with a thickness of ∼90 km and a seismic velocity of 5–6 % higher than that of the surrounding mantle. Early arrivals (∼1.5 s) also appear at the S-net stations off South Hokkaido, which are caused by northwestward steepening of the Pacific slab beneath the Tohoku-Hokkaido junction area. These results shed new light on the structural heterogeneity and subduction dynamics of the East Japan arc.\",\"PeriodicalId\":22257,\"journal\":{\"name\":\"Tectonophysics\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tectonophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tecto.2024.230579\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tectonophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.tecto.2024.230579","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Teleseismic evidence for structural heterogeneity in East Japan forearc from seafloor S-net data
We measure and analyze 4381 P-wave and 4307 S-wave arrival times of 48 teleseismic events recorded at 150 stations of a permanent seafloor seismic network (S-net) installed in the outer-rise and forearc region off East Japan. The obtained relative travel-time residuals amounting to ∼3 s at the S-net stations are generally negative on the incoming Pacific and Philippine Sea plates and positive on the continental Okhotsk plate, which reflect high and low seismic velocities, respectively. This pattern is generally consistent with previous results on the seismic velocity structure of the crust and upper mantle beneath the East Japan forearc and the outer-rise area. Large early arrivals (∼2.0 s) appear in the southern part of the S-net for the teleseismic events in the southwestern direction, which are mainly due to southwestward steepening of the subducting Pacific slab beneath Kanto. In the study region, the Pacific slab is the most significant anomaly with a thickness of ∼90 km and a seismic velocity of 5–6 % higher than that of the surrounding mantle. Early arrivals (∼1.5 s) also appear at the S-net stations off South Hokkaido, which are caused by northwestward steepening of the Pacific slab beneath the Tohoku-Hokkaido junction area. These results shed new light on the structural heterogeneity and subduction dynamics of the East Japan arc.
期刊介绍:
The prime focus of Tectonophysics will be high-impact original research and reviews in the fields of kinematics, structure, composition, and dynamics of the solid arth at all scales. Tectonophysics particularly encourages submission of papers based on the integration of a multitude of geophysical, geological, geochemical, geodynamic, and geotectonic methods