Muhamad Al-Haqqem Abdul Hadi, Nor Azura Abdul Rahim, Roshasnorlyza Hazan, Cheow Keat Yeoh
{"title":"以马来酸酐为偶联剂和TPV剂的PLA/ENR共混物交联行为与形态发展的关系","authors":"Muhamad Al-Haqqem Abdul Hadi, Nor Azura Abdul Rahim, Roshasnorlyza Hazan, Cheow Keat Yeoh","doi":"10.1007/s10965-024-04214-x","DOIUrl":null,"url":null,"abstract":"<div><p>Maleic anhydride (MA) can function as both a grafting agent and a thermoplastic vulcanizate (TPV) agent or crosslinker in thermoplastic elastomer (TPE) blends of polylactic acid (PLA) and epoxidized natural rubber (ENR), depending on the degree of crosslinking. To validate the claim, a set of formulations with MA ranges from 0 to 2.0 phr was added to the PLA/ENR blend at different matrix blend ratios and compounding sequences. To distinguish the types of networks responsible for altering the blend’s phase and melt flow behaviour, various tests including mechanical, rheological, viscoelasicity validation, visual imaging, thermal analysis and spectroscopy testing of X-ray diffraction analysis (XRD) and Fourier transform infrared (FTIR) were conducted. The results revealed that, without the presence of MA, the blends behave as typical thermoplastic elastomers (TPEs). Meanwhile, the addition of MA enhances the tensile properties and modifies the blend microstructure, indicating the presence of a coupling effect in the PLA/ENR blend. With further inclusion of more MA inside the blends, the rise in crosslinking degree transforms the blend into a thermoplastic vulcanizate (TPV) compound. Interestingly, in the molten state, the TPV blends exhibit dilatant flow behaviour, which is in contrast with the shear-thinning flow pattern of PLA.</p></div>","PeriodicalId":658,"journal":{"name":"Journal of Polymer Research","volume":"31 12","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relationships between crosslinking behaviour and morphological development in PLA/ENR blends using maleic anhydride as a coupling and TPV agent\",\"authors\":\"Muhamad Al-Haqqem Abdul Hadi, Nor Azura Abdul Rahim, Roshasnorlyza Hazan, Cheow Keat Yeoh\",\"doi\":\"10.1007/s10965-024-04214-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Maleic anhydride (MA) can function as both a grafting agent and a thermoplastic vulcanizate (TPV) agent or crosslinker in thermoplastic elastomer (TPE) blends of polylactic acid (PLA) and epoxidized natural rubber (ENR), depending on the degree of crosslinking. To validate the claim, a set of formulations with MA ranges from 0 to 2.0 phr was added to the PLA/ENR blend at different matrix blend ratios and compounding sequences. To distinguish the types of networks responsible for altering the blend’s phase and melt flow behaviour, various tests including mechanical, rheological, viscoelasicity validation, visual imaging, thermal analysis and spectroscopy testing of X-ray diffraction analysis (XRD) and Fourier transform infrared (FTIR) were conducted. The results revealed that, without the presence of MA, the blends behave as typical thermoplastic elastomers (TPEs). Meanwhile, the addition of MA enhances the tensile properties and modifies the blend microstructure, indicating the presence of a coupling effect in the PLA/ENR blend. With further inclusion of more MA inside the blends, the rise in crosslinking degree transforms the blend into a thermoplastic vulcanizate (TPV) compound. Interestingly, in the molten state, the TPV blends exhibit dilatant flow behaviour, which is in contrast with the shear-thinning flow pattern of PLA.</p></div>\",\"PeriodicalId\":658,\"journal\":{\"name\":\"Journal of Polymer Research\",\"volume\":\"31 12\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymer Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10965-024-04214-x\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10965-024-04214-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Relationships between crosslinking behaviour and morphological development in PLA/ENR blends using maleic anhydride as a coupling and TPV agent
Maleic anhydride (MA) can function as both a grafting agent and a thermoplastic vulcanizate (TPV) agent or crosslinker in thermoplastic elastomer (TPE) blends of polylactic acid (PLA) and epoxidized natural rubber (ENR), depending on the degree of crosslinking. To validate the claim, a set of formulations with MA ranges from 0 to 2.0 phr was added to the PLA/ENR blend at different matrix blend ratios and compounding sequences. To distinguish the types of networks responsible for altering the blend’s phase and melt flow behaviour, various tests including mechanical, rheological, viscoelasicity validation, visual imaging, thermal analysis and spectroscopy testing of X-ray diffraction analysis (XRD) and Fourier transform infrared (FTIR) were conducted. The results revealed that, without the presence of MA, the blends behave as typical thermoplastic elastomers (TPEs). Meanwhile, the addition of MA enhances the tensile properties and modifies the blend microstructure, indicating the presence of a coupling effect in the PLA/ENR blend. With further inclusion of more MA inside the blends, the rise in crosslinking degree transforms the blend into a thermoplastic vulcanizate (TPV) compound. Interestingly, in the molten state, the TPV blends exhibit dilatant flow behaviour, which is in contrast with the shear-thinning flow pattern of PLA.
期刊介绍:
Journal of Polymer Research provides a forum for the prompt publication of articles concerning the fundamental and applied research of polymers. Its great feature lies in the diversity of content which it encompasses, drawing together results from all aspects of polymer science and technology.
As polymer research is rapidly growing around the globe, the aim of this journal is to establish itself as a significant information tool not only for the international polymer researchers in academia but also for those working in industry. The scope of the journal covers a wide range of the highly interdisciplinary field of polymer science and technology, including:
polymer synthesis;
polymer reactions;
polymerization kinetics;
polymer physics;
morphology;
structure-property relationships;
polymer analysis and characterization;
physical and mechanical properties;
electrical and optical properties;
polymer processing and rheology;
application of polymers;
supramolecular science of polymers;
polymer composites.