利用深度学习实现解剖尺度定位的微出血自动检测

IF 10.7 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Medical image analysis Pub Date : 2024-11-30 DOI:10.1016/j.media.2024.103415
Jun-Ho Kim, Young Noh, Haejoon Lee, Seul Lee, Woo-Ram Kim, Koung Mi Kang, Eung Yeop Kim, Mohammed A. Al-masni, Dong-Hyun Kim
{"title":"利用深度学习实现解剖尺度定位的微出血自动检测","authors":"Jun-Ho Kim, Young Noh, Haejoon Lee, Seul Lee, Woo-Ram Kim, Koung Mi Kang, Eung Yeop Kim, Mohammed A. Al-masni, Dong-Hyun Kim","doi":"10.1016/j.media.2024.103415","DOIUrl":null,"url":null,"abstract":"Cerebral Microbleeds (CMBs) are chronic deposits of small blood products in the brain tissues, which have explicit relation to various cerebrovascular diseases depending on their anatomical location, including cognitive decline, intracerebral hemorrhage, and cerebral infarction. However, manual detection of CMBs is a time consuming and error-prone process because of their sparse and tiny structural properties. The detection of CMBs is commonly affected by the presence of many CMB mimics that cause a high false-positive rate (FPR), such as calcifications and pial vessels. This paper proposes a novel 3D deep learning framework that not only detects CMBs but also identifies their anatomical location in the brain (i.e., lobar, deep, and infratentorial regions). For the CMBs detection task, we propose a single end-to-end model by leveraging the 3D U-Net as a backbone with Region Proposal Network (RPN). To significantly reduce the false positives within the same single model, we develop a new scheme, containing Feature Fusion Module (FFM) that detects small candidates utilizing contextual information and Hard Sample Prototype Learning (HSPL) that mines CMB mimics and generates additional loss term called concentration loss using Convolutional Prototype Learning (CPL). For the anatomical localization task, we exploit the 3D U-Net segmentation network to segment anatomical structures of the brain. This task not only identifies to which region the CMBs belong but also eliminates some false positives from the detection task by leveraging anatomical information. We utilize Susceptibility-Weighted Imaging (SWI) and phase images as 3D input to efficiently capture 3D information. The results show that the proposed RPN that utilizes the FFM and HSPL outperforms the baseline RPN and achieves a sensitivity of 94.66 % vs. 93.33 % and an average number of false positives per subject (FP<ce:inf loc=\"post\">avg</ce:inf>) of 0.86 vs. 14.73. Furthermore, the anatomical localization task enhances the detection performance by reducing the FP<ce:inf loc=\"post\">avg</ce:inf> to 0.56 while maintaining the sensitivity of 94.66 %.","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"11 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward automated detection of microbleeds with anatomical scale localization using deep learning\",\"authors\":\"Jun-Ho Kim, Young Noh, Haejoon Lee, Seul Lee, Woo-Ram Kim, Koung Mi Kang, Eung Yeop Kim, Mohammed A. Al-masni, Dong-Hyun Kim\",\"doi\":\"10.1016/j.media.2024.103415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cerebral Microbleeds (CMBs) are chronic deposits of small blood products in the brain tissues, which have explicit relation to various cerebrovascular diseases depending on their anatomical location, including cognitive decline, intracerebral hemorrhage, and cerebral infarction. However, manual detection of CMBs is a time consuming and error-prone process because of their sparse and tiny structural properties. The detection of CMBs is commonly affected by the presence of many CMB mimics that cause a high false-positive rate (FPR), such as calcifications and pial vessels. This paper proposes a novel 3D deep learning framework that not only detects CMBs but also identifies their anatomical location in the brain (i.e., lobar, deep, and infratentorial regions). For the CMBs detection task, we propose a single end-to-end model by leveraging the 3D U-Net as a backbone with Region Proposal Network (RPN). To significantly reduce the false positives within the same single model, we develop a new scheme, containing Feature Fusion Module (FFM) that detects small candidates utilizing contextual information and Hard Sample Prototype Learning (HSPL) that mines CMB mimics and generates additional loss term called concentration loss using Convolutional Prototype Learning (CPL). For the anatomical localization task, we exploit the 3D U-Net segmentation network to segment anatomical structures of the brain. This task not only identifies to which region the CMBs belong but also eliminates some false positives from the detection task by leveraging anatomical information. We utilize Susceptibility-Weighted Imaging (SWI) and phase images as 3D input to efficiently capture 3D information. The results show that the proposed RPN that utilizes the FFM and HSPL outperforms the baseline RPN and achieves a sensitivity of 94.66 % vs. 93.33 % and an average number of false positives per subject (FP<ce:inf loc=\\\"post\\\">avg</ce:inf>) of 0.86 vs. 14.73. Furthermore, the anatomical localization task enhances the detection performance by reducing the FP<ce:inf loc=\\\"post\\\">avg</ce:inf> to 0.56 while maintaining the sensitivity of 94.66 %.\",\"PeriodicalId\":18328,\"journal\":{\"name\":\"Medical image analysis\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image analysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.media.2024.103415\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.media.2024.103415","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

脑微出血(Cerebral micro出血,CMBs)是脑组织内小血制品的慢性沉积,其与认知能力下降、脑出血、脑梗死等多种脑血管疾病的解剖位置有明确关系。然而,由于宇宙微波背景粒子的稀疏和微小的结构特性,人工检测是一个耗时且容易出错的过程。CMB的检测通常受到许多CMB模拟物的影响,这些模拟物会导致高假阳性率(FPR),如钙化和脑脊液血管。本文提出了一种新的3D深度学习框架,该框架不仅可以检测CMBs,还可以识别它们在大脑中的解剖位置(即脑叶、脑深部和幕下区域)。对于CMBs检测任务,我们提出了一个单一的端到端模型,利用3D U-Net作为区域提议网络(RPN)的骨干。为了显著减少同一单一模型中的假阳性,我们开发了一种新的方案,其中包含特征融合模块(FFM),该模块利用上下文信息和硬样本原型学习(HSPL)来检测小候选对象,该模块挖掘CMB模拟并使用卷积原型学习(CPL)生成称为浓度损失的额外损失项。对于解剖定位任务,我们利用三维U-Net分割网络对大脑解剖结构进行分割。该任务不仅可以识别CMBs属于哪个区域,还可以利用解剖信息消除检测任务中的一些误报。我们利用磁化率加权成像(SWI)和相位图像作为三维输入,有效地捕获三维信息。结果表明,利用FFM和HSPL的RPN优于基线RPN,灵敏度为94.66%比93.33%,每个受试者的平均假阳性数(FPavg)为0.86比14.73。此外,解剖定位任务将FPavg降低到0.56,同时保持94.66%的灵敏度,从而提高了检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Toward automated detection of microbleeds with anatomical scale localization using deep learning
Cerebral Microbleeds (CMBs) are chronic deposits of small blood products in the brain tissues, which have explicit relation to various cerebrovascular diseases depending on their anatomical location, including cognitive decline, intracerebral hemorrhage, and cerebral infarction. However, manual detection of CMBs is a time consuming and error-prone process because of their sparse and tiny structural properties. The detection of CMBs is commonly affected by the presence of many CMB mimics that cause a high false-positive rate (FPR), such as calcifications and pial vessels. This paper proposes a novel 3D deep learning framework that not only detects CMBs but also identifies their anatomical location in the brain (i.e., lobar, deep, and infratentorial regions). For the CMBs detection task, we propose a single end-to-end model by leveraging the 3D U-Net as a backbone with Region Proposal Network (RPN). To significantly reduce the false positives within the same single model, we develop a new scheme, containing Feature Fusion Module (FFM) that detects small candidates utilizing contextual information and Hard Sample Prototype Learning (HSPL) that mines CMB mimics and generates additional loss term called concentration loss using Convolutional Prototype Learning (CPL). For the anatomical localization task, we exploit the 3D U-Net segmentation network to segment anatomical structures of the brain. This task not only identifies to which region the CMBs belong but also eliminates some false positives from the detection task by leveraging anatomical information. We utilize Susceptibility-Weighted Imaging (SWI) and phase images as 3D input to efficiently capture 3D information. The results show that the proposed RPN that utilizes the FFM and HSPL outperforms the baseline RPN and achieves a sensitivity of 94.66 % vs. 93.33 % and an average number of false positives per subject (FPavg) of 0.86 vs. 14.73. Furthermore, the anatomical localization task enhances the detection performance by reducing the FPavg to 0.56 while maintaining the sensitivity of 94.66 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
期刊最新文献
Corrigendum to "Detection and analysis of cerebral aneurysms based on X-ray rotational angiography - the CADA 2020 challenge" [Medical Image Analysis, April 2022, Volume 77, 102333]. Editorial for Special Issue on Foundation Models for Medical Image Analysis. Few-shot medical image segmentation with high-fidelity prototypes. The Developing Human Connectome Project: A fast deep learning-based pipeline for neonatal cortical surface reconstruction. DSAM: A deep learning framework for analyzing temporal and spatial dynamics in brain networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1