QuIDS:基于量子支持向量机的物联网入侵检测系统

IF 7.7 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Journal of Network and Computer Applications Pub Date : 2024-11-26 DOI:10.1016/j.jnca.2024.104072
Rakesh Kumar, Mayank Swarnkar
{"title":"QuIDS:基于量子支持向量机的物联网入侵检测系统","authors":"Rakesh Kumar, Mayank Swarnkar","doi":"10.1016/j.jnca.2024.104072","DOIUrl":null,"url":null,"abstract":"With the increasing popularity of IoT, there has been a noticeable surge in security breaches associated with vulnerable IoT devices. To identify and counter such attacks. Intrusion Detection Systems (IDS) are deployed. However, these IoT devices use device-specific application layer protocols like MQTT and CoAP, which pose an additional burden to the traditional IDS. Several Machine Learning (ML) and Deep Learning (DL) based IDS are developed to detect malicious IoT network traffic. However, in recent times, a variety of IoT devices have been available on the market, resulting in the frequent installation and uninstallation of IoT devices based on users’ needs. Moreover, ML and DL-based IDS must train with sufficient device-specific attack training data for each IoT device, consuming a noticeable amount of training time. To solve these problems, we propose QuIDS, which utilizes a Quantum Support Vector Classifier to classify attacks in an IoT network. QuIDS requires very little training data compared to ML or DL to train and accurately identify attacks in the IoT network. QuIDS extracts eight flow-level features from IoT network traffic and utilizes them over four quantum bits for training. We experimented with QuIDS on two publicly available datasets and found the average recall rate, precision, and f1-score of the QuIDS as 91.1%, 84.3%, and 86.4%, respectively. Moreover, comparing QuIDS with the ML and DL methods, we found that QuIDS outperformed by 37.7%, 24.4.6%, and 36.9% more average recall and precision rates than the ML and DL methods, respectively.","PeriodicalId":54784,"journal":{"name":"Journal of Network and Computer Applications","volume":"60 1","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"QuIDS: A Quantum Support Vector machine-based Intrusion Detection System for IoT networks\",\"authors\":\"Rakesh Kumar, Mayank Swarnkar\",\"doi\":\"10.1016/j.jnca.2024.104072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increasing popularity of IoT, there has been a noticeable surge in security breaches associated with vulnerable IoT devices. To identify and counter such attacks. Intrusion Detection Systems (IDS) are deployed. However, these IoT devices use device-specific application layer protocols like MQTT and CoAP, which pose an additional burden to the traditional IDS. Several Machine Learning (ML) and Deep Learning (DL) based IDS are developed to detect malicious IoT network traffic. However, in recent times, a variety of IoT devices have been available on the market, resulting in the frequent installation and uninstallation of IoT devices based on users’ needs. Moreover, ML and DL-based IDS must train with sufficient device-specific attack training data for each IoT device, consuming a noticeable amount of training time. To solve these problems, we propose QuIDS, which utilizes a Quantum Support Vector Classifier to classify attacks in an IoT network. QuIDS requires very little training data compared to ML or DL to train and accurately identify attacks in the IoT network. QuIDS extracts eight flow-level features from IoT network traffic and utilizes them over four quantum bits for training. We experimented with QuIDS on two publicly available datasets and found the average recall rate, precision, and f1-score of the QuIDS as 91.1%, 84.3%, and 86.4%, respectively. Moreover, comparing QuIDS with the ML and DL methods, we found that QuIDS outperformed by 37.7%, 24.4.6%, and 36.9% more average recall and precision rates than the ML and DL methods, respectively.\",\"PeriodicalId\":54784,\"journal\":{\"name\":\"Journal of Network and Computer Applications\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Network and Computer Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jnca.2024.104072\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Network and Computer Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.jnca.2024.104072","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

随着物联网的日益普及,与易受攻击的物联网设备相关的安全漏洞明显激增。识别和反击这类攻击。已部署入侵检测系统。然而,这些物联网设备使用特定于设备的应用层协议,如MQTT和CoAP,这给传统的IDS带来了额外的负担。开发了几种基于机器学习(ML)和深度学习(DL)的IDS来检测恶意物联网网络流量。然而,近年来,市场上出现了各种各样的物联网设备,导致根据用户需求频繁安装和卸载物联网设备。此外,基于ML和dl的IDS必须为每个物联网设备使用足够的设备特定攻击训练数据进行训练,这消耗了大量的训练时间。为了解决这些问题,我们提出了QuIDS,它利用量子支持向量分类器对物联网网络中的攻击进行分类。与ML或DL相比,QuIDS需要很少的训练数据来训练和准确识别物联网网络中的攻击。QuIDS从物联网网络流量中提取8个流级特征,并利用它们在4个量子比特上进行训练。我们在两个公开的数据集上对QuIDS进行了实验,发现QuIDS的平均召回率、准确率和f1得分分别为91.1%、84.3%和86.4%。此外,将QuIDS与ML和DL方法进行比较,我们发现QuIDS的平均查全率和查准率分别比ML和DL方法高37.7%、24.4.6%和36.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
QuIDS: A Quantum Support Vector machine-based Intrusion Detection System for IoT networks
With the increasing popularity of IoT, there has been a noticeable surge in security breaches associated with vulnerable IoT devices. To identify and counter such attacks. Intrusion Detection Systems (IDS) are deployed. However, these IoT devices use device-specific application layer protocols like MQTT and CoAP, which pose an additional burden to the traditional IDS. Several Machine Learning (ML) and Deep Learning (DL) based IDS are developed to detect malicious IoT network traffic. However, in recent times, a variety of IoT devices have been available on the market, resulting in the frequent installation and uninstallation of IoT devices based on users’ needs. Moreover, ML and DL-based IDS must train with sufficient device-specific attack training data for each IoT device, consuming a noticeable amount of training time. To solve these problems, we propose QuIDS, which utilizes a Quantum Support Vector Classifier to classify attacks in an IoT network. QuIDS requires very little training data compared to ML or DL to train and accurately identify attacks in the IoT network. QuIDS extracts eight flow-level features from IoT network traffic and utilizes them over four quantum bits for training. We experimented with QuIDS on two publicly available datasets and found the average recall rate, precision, and f1-score of the QuIDS as 91.1%, 84.3%, and 86.4%, respectively. Moreover, comparing QuIDS with the ML and DL methods, we found that QuIDS outperformed by 37.7%, 24.4.6%, and 36.9% more average recall and precision rates than the ML and DL methods, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Network and Computer Applications
Journal of Network and Computer Applications 工程技术-计算机:跨学科应用
CiteScore
21.50
自引率
3.40%
发文量
142
审稿时长
37 days
期刊介绍: The Journal of Network and Computer Applications welcomes research contributions, surveys, and notes in all areas relating to computer networks and applications thereof. Sample topics include new design techniques, interesting or novel applications, components or standards; computer networks with tools such as WWW; emerging standards for internet protocols; Wireless networks; Mobile Computing; emerging computing models such as cloud computing, grid computing; applications of networked systems for remote collaboration and telemedicine, etc. The journal is abstracted and indexed in Scopus, Engineering Index, Web of Science, Science Citation Index Expanded and INSPEC.
期刊最新文献
ALB-TP: Adaptive Load Balancing based on Traffic Prediction using GRU-Attention for Software-Defined DCNs On and off the manifold: Generation and Detection of adversarial attacks in IIoT networks Light up that Droid! On the effectiveness of static analysis features against app obfuscation for Android malware detection Clusters in chaos: A deep unsupervised learning paradigm for network anomaly detection Consensus hybrid ensemble machine learning for intrusion detection with explainable AI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1