利用混合菌群对食品和林业废弃物进行再利用。

4区 工程技术 Q2 Biochemistry, Genetics and Molecular Biology Advances in biochemical engineering/biotechnology Pub Date : 2024-12-07 DOI:10.1007/10_2024_268
Elias Hakalehto, Anneli Heitto, Frank Adusei-Mensah, Ari Jääskeläinen, Reino Laatikainen, Jukka Kivelä, Erik Dahlquist, Jaan den Boer, Emilia den Boer
{"title":"利用混合菌群对食品和林业废弃物进行再利用。","authors":"Elias Hakalehto, Anneli Heitto, Frank Adusei-Mensah, Ari Jääskeläinen, Reino Laatikainen, Jukka Kivelä, Erik Dahlquist, Jaan den Boer, Emilia den Boer","doi":"10.1007/10_2024_268","DOIUrl":null,"url":null,"abstract":"<p><p>Organic raw materials are the renewable sources of substrates for our industries and for our microbial communities. As industrial, agricultural or forestry side streams, they are usually affordable if the process entities, equipment and protocols are properly designed. The microbial communities that are used as biocatalysts take care of the process development together with us or with the process team. Moreover, they constitute or shape the process to resemble the natural bioprocess as it takes place or occurs in nature and thus make it \"Industry Like Nature®\" - type of endeavor. As an ultimate result, we could make our industries increasingly 100% sustainable with the help of microbes. In case of food or forest industry side streams, this means fossil-free production of valuable chemicals, food and feed components, energy and gases, and soil improvement or organic fertilizers. The so-called \"Finnoflag biorefinery\" idea has been tested in many cases together with domestic and international colleagues and industries. In here, we attempt to share the basic thinking.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Food and Forest Industry Waste Reuse Using Mixed Microflora.\",\"authors\":\"Elias Hakalehto, Anneli Heitto, Frank Adusei-Mensah, Ari Jääskeläinen, Reino Laatikainen, Jukka Kivelä, Erik Dahlquist, Jaan den Boer, Emilia den Boer\",\"doi\":\"10.1007/10_2024_268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Organic raw materials are the renewable sources of substrates for our industries and for our microbial communities. As industrial, agricultural or forestry side streams, they are usually affordable if the process entities, equipment and protocols are properly designed. The microbial communities that are used as biocatalysts take care of the process development together with us or with the process team. Moreover, they constitute or shape the process to resemble the natural bioprocess as it takes place or occurs in nature and thus make it \\\"Industry Like Nature®\\\" - type of endeavor. As an ultimate result, we could make our industries increasingly 100% sustainable with the help of microbes. In case of food or forest industry side streams, this means fossil-free production of valuable chemicals, food and feed components, energy and gases, and soil improvement or organic fertilizers. The so-called \\\"Finnoflag biorefinery\\\" idea has been tested in many cases together with domestic and international colleagues and industries. In here, we attempt to share the basic thinking.</p>\",\"PeriodicalId\":7198,\"journal\":{\"name\":\"Advances in biochemical engineering/biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in biochemical engineering/biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/10_2024_268\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in biochemical engineering/biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/10_2024_268","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

有机原料是我们工业和微生物群落的可再生基质。作为工业、农业或林业侧流,如果工艺实体、设备和协议设计得当,它们通常是负担得起的。用作生物催化剂的微生物群落与我们或工艺团队一起负责工艺开发。此外,它们构成或塑造过程,使其类似于自然界中发生或发生的自然生物过程,从而使其成为“自然工业®”类型的努力。最终的结果是,在微生物的帮助下,我们可以使我们的工业越来越100%可持续。在食品或森林工业侧流的情况下,这意味着有价值的化学品,食品和饲料成分,能源和气体,土壤改良或有机肥料的无化石生产。所谓的“Finnoflag生物炼制”理念已经与国内外同行和行业一起在许多情况下进行了测试。在这里,我们试图分享基本的思考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Food and Forest Industry Waste Reuse Using Mixed Microflora.

Organic raw materials are the renewable sources of substrates for our industries and for our microbial communities. As industrial, agricultural or forestry side streams, they are usually affordable if the process entities, equipment and protocols are properly designed. The microbial communities that are used as biocatalysts take care of the process development together with us or with the process team. Moreover, they constitute or shape the process to resemble the natural bioprocess as it takes place or occurs in nature and thus make it "Industry Like Nature®" - type of endeavor. As an ultimate result, we could make our industries increasingly 100% sustainable with the help of microbes. In case of food or forest industry side streams, this means fossil-free production of valuable chemicals, food and feed components, energy and gases, and soil improvement or organic fertilizers. The so-called "Finnoflag biorefinery" idea has been tested in many cases together with domestic and international colleagues and industries. In here, we attempt to share the basic thinking.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in biochemical engineering/biotechnology
Advances in biochemical engineering/biotechnology 工程技术-生物工程与应用微生物
CiteScore
5.70
自引率
0.00%
发文量
29
期刊介绍: Advances in Biochemical Engineering/Biotechnology reviews actual trends in modern biotechnology. Its aim is to cover all aspects of this interdisciplinary technology where knowledge, methods and expertise are required for chemistry, biochemistry, microbiology, genetics, chemical engineering and computer science. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. They give the state-of-the-art of a topic in a comprehensive way thus being a valuable source for the next 3 - 5 years. It also discusses new discoveries and applications.
期刊最新文献
Microbial Electrochemical Technologies: Sustainable Solutions for Addressing Environmental Challenges. Agricultural Wastes to Value-Added Products: Economic and Environmental Perspectives for Waste Conversion. Production of Novel Energy Gases in Bioprocesses Using Undefined Mixed Cultures. Food and Forest Industry Waste Reuse Using Mixed Microflora. Introduction to the Use of Microbial Communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1