Shun-Xiang Jiang, Ze-Yu Zhou, Bin Tu, Kai Song, Li-Chan Lin, Zhi-Yan Liu, Wei Cao, Jian-Yuan Zhao, Hui Tao
{"title":"通过sFRP3启动子甲基化对线粒体分裂和心脏纤维化的表观遗传调控。","authors":"Shun-Xiang Jiang, Ze-Yu Zhou, Bin Tu, Kai Song, Li-Chan Lin, Zhi-Yan Liu, Wei Cao, Jian-Yuan Zhao, Hui Tao","doi":"10.1007/s00018-024-05516-5","DOIUrl":null,"url":null,"abstract":"<p><p>In the process of cardiac fibrosis, the balance between the Wnt/β-catenin signalling pathway and Wnt inhibitory factor genes plays an important role. Secreted frizzled-related protein 3 (sFRP3), a Wnt inhibitory factor, has been linked to epigenetic mechanisms. However, the underlying role of epigenetic regulation of sFRP3, which is crucial in fibroblast proliferation and migration, in cardiac fibrosis have not been elucidated. Therefore, we aimed to investigate epigenetic and transcription of sFRP3 in cardiac fibrosis. Using clinical samples and animal models, we investigated the role of sFRP3 promoter methylation in potentially enhancing cardiac fibrosis. We also attempted to characterize the underlying mechanisms using an isoprenaline-induced cardiac fibrosis mouse model and cultured primary cardiac fibroblasts. Hypermethylation of sFRP3 was associated with perpetuation of fibroblast activation and cardiac fibrosis. Additionally, mitochondrial fission, regulated by the Drp1 protein, was found to be significantly altered in fibrotic hearts, contributing to fibroblast proliferation and cardiac fibrosis. Epigenetic modification of sFRP3 promoter methylation also influenced mitochondrial dynamics, linking sFRP3 repression to excessive mitochondrial fission. Moreover, sFRP3 hypermethylation was mediated by DNA methyltransferase 3A (DNMT3A) in cardiac fibrosis and fibroblasts, and DNMT3A knockdown demethylated the sFRP3 promoter, rescued sFRP3 loss, and ameliorated the isoprenaline-induced cardiac fibrosis and cardiac fibroblast proliferation, migration and mitochondrial fission. Mechanistically, DNMT3A was shown to epigenetically repress sFRP3 expression via promoter methylation. We describe a novel epigenetic mechanism wherein DNMT3A represses sFRP3 through promoter methylation, which is a critical mediator of cardiac fibrosis and mitochondrial fission. Our findings provide new insights for the development of preventive measures for cardiac fibrosis.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"81 1","pages":"483"},"PeriodicalIF":6.2000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11625034/pdf/","citationCount":"0","resultStr":"{\"title\":\"Epigenetic regulation of mitochondrial fission and cardiac fibrosis via sFRP3 promoter methylation.\",\"authors\":\"Shun-Xiang Jiang, Ze-Yu Zhou, Bin Tu, Kai Song, Li-Chan Lin, Zhi-Yan Liu, Wei Cao, Jian-Yuan Zhao, Hui Tao\",\"doi\":\"10.1007/s00018-024-05516-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the process of cardiac fibrosis, the balance between the Wnt/β-catenin signalling pathway and Wnt inhibitory factor genes plays an important role. Secreted frizzled-related protein 3 (sFRP3), a Wnt inhibitory factor, has been linked to epigenetic mechanisms. However, the underlying role of epigenetic regulation of sFRP3, which is crucial in fibroblast proliferation and migration, in cardiac fibrosis have not been elucidated. Therefore, we aimed to investigate epigenetic and transcription of sFRP3 in cardiac fibrosis. Using clinical samples and animal models, we investigated the role of sFRP3 promoter methylation in potentially enhancing cardiac fibrosis. We also attempted to characterize the underlying mechanisms using an isoprenaline-induced cardiac fibrosis mouse model and cultured primary cardiac fibroblasts. Hypermethylation of sFRP3 was associated with perpetuation of fibroblast activation and cardiac fibrosis. Additionally, mitochondrial fission, regulated by the Drp1 protein, was found to be significantly altered in fibrotic hearts, contributing to fibroblast proliferation and cardiac fibrosis. Epigenetic modification of sFRP3 promoter methylation also influenced mitochondrial dynamics, linking sFRP3 repression to excessive mitochondrial fission. Moreover, sFRP3 hypermethylation was mediated by DNA methyltransferase 3A (DNMT3A) in cardiac fibrosis and fibroblasts, and DNMT3A knockdown demethylated the sFRP3 promoter, rescued sFRP3 loss, and ameliorated the isoprenaline-induced cardiac fibrosis and cardiac fibroblast proliferation, migration and mitochondrial fission. Mechanistically, DNMT3A was shown to epigenetically repress sFRP3 expression via promoter methylation. We describe a novel epigenetic mechanism wherein DNMT3A represses sFRP3 through promoter methylation, which is a critical mediator of cardiac fibrosis and mitochondrial fission. Our findings provide new insights for the development of preventive measures for cardiac fibrosis.</p>\",\"PeriodicalId\":10007,\"journal\":{\"name\":\"Cellular and Molecular Life Sciences\",\"volume\":\"81 1\",\"pages\":\"483\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11625034/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular and Molecular Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00018-024-05516-5\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-024-05516-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Epigenetic regulation of mitochondrial fission and cardiac fibrosis via sFRP3 promoter methylation.
In the process of cardiac fibrosis, the balance between the Wnt/β-catenin signalling pathway and Wnt inhibitory factor genes plays an important role. Secreted frizzled-related protein 3 (sFRP3), a Wnt inhibitory factor, has been linked to epigenetic mechanisms. However, the underlying role of epigenetic regulation of sFRP3, which is crucial in fibroblast proliferation and migration, in cardiac fibrosis have not been elucidated. Therefore, we aimed to investigate epigenetic and transcription of sFRP3 in cardiac fibrosis. Using clinical samples and animal models, we investigated the role of sFRP3 promoter methylation in potentially enhancing cardiac fibrosis. We also attempted to characterize the underlying mechanisms using an isoprenaline-induced cardiac fibrosis mouse model and cultured primary cardiac fibroblasts. Hypermethylation of sFRP3 was associated with perpetuation of fibroblast activation and cardiac fibrosis. Additionally, mitochondrial fission, regulated by the Drp1 protein, was found to be significantly altered in fibrotic hearts, contributing to fibroblast proliferation and cardiac fibrosis. Epigenetic modification of sFRP3 promoter methylation also influenced mitochondrial dynamics, linking sFRP3 repression to excessive mitochondrial fission. Moreover, sFRP3 hypermethylation was mediated by DNA methyltransferase 3A (DNMT3A) in cardiac fibrosis and fibroblasts, and DNMT3A knockdown demethylated the sFRP3 promoter, rescued sFRP3 loss, and ameliorated the isoprenaline-induced cardiac fibrosis and cardiac fibroblast proliferation, migration and mitochondrial fission. Mechanistically, DNMT3A was shown to epigenetically repress sFRP3 expression via promoter methylation. We describe a novel epigenetic mechanism wherein DNMT3A represses sFRP3 through promoter methylation, which is a critical mediator of cardiac fibrosis and mitochondrial fission. Our findings provide new insights for the development of preventive measures for cardiac fibrosis.
期刊介绍:
Journal Name: Cellular and Molecular Life Sciences (CMLS)
Location: Basel, Switzerland
Focus:
Multidisciplinary journal
Publishes research articles, reviews, multi-author reviews, and visions & reflections articles
Coverage:
Latest aspects of biological and biomedical research
Areas include:
Biochemistry and molecular biology
Cell biology
Molecular and cellular aspects of biomedicine
Neuroscience
Pharmacology
Immunology
Additional Features:
Welcomes comments on any article published in CMLS
Accepts suggestions for topics to be covered