具有形状记忆效应的可生物降解肠道给药装置的4D打印。

IF 5.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY International Journal of Pharmaceutics Pub Date : 2025-01-25 DOI:10.1016/j.ijpharm.2024.125051
Yulia Yuts , Reece McCabe , Maya Krell , Marilena Bohley , Jean-Christophe Leroux
{"title":"具有形状记忆效应的可生物降解肠道给药装置的4D打印。","authors":"Yulia Yuts ,&nbsp;Reece McCabe ,&nbsp;Maya Krell ,&nbsp;Marilena Bohley ,&nbsp;Jean-Christophe Leroux","doi":"10.1016/j.ijpharm.2024.125051","DOIUrl":null,"url":null,"abstract":"<div><div>Expanding devices designed to physically facilitate the permeation of drugs across the gastrointestinal mucosa are gaining attention for the oral delivery of therapeutic macromolecules. The ideal system should be biodegradable with latex-like properties, allowing it to withstand gut movement without breaking prematurely and preventing intestinal obstruction or damage. A highly foldable and elastic device is desirable because it can fit into commercial capsules by being compressed into confined spaces. However, this compression has limits due to the device’s tendency to spring back to its original shape driven by stored elastic energy after deformation. This challenge can be addressed by using shape-memory polymers. In this work, we report a photo-crosslinkable resin suitable for 3D printing by digital light processing that yields an elastomer with latex-like properties, shape-recovery at body temperature, and degradation within 6 h under simulated intestinal conditions. Thermal shape-memory was conferred by adding stearyl(acrylate) to poly(β-aminoester)-based inks, achieving high elasticity (&gt;700 %) and strength (&gt;7.5 MPa), along with strain-hardening properties.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":"669 ","pages":"Article 125051"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"4D printing of biodegradable intestinal drug delivery devices with shape-memory effect\",\"authors\":\"Yulia Yuts ,&nbsp;Reece McCabe ,&nbsp;Maya Krell ,&nbsp;Marilena Bohley ,&nbsp;Jean-Christophe Leroux\",\"doi\":\"10.1016/j.ijpharm.2024.125051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Expanding devices designed to physically facilitate the permeation of drugs across the gastrointestinal mucosa are gaining attention for the oral delivery of therapeutic macromolecules. The ideal system should be biodegradable with latex-like properties, allowing it to withstand gut movement without breaking prematurely and preventing intestinal obstruction or damage. A highly foldable and elastic device is desirable because it can fit into commercial capsules by being compressed into confined spaces. However, this compression has limits due to the device’s tendency to spring back to its original shape driven by stored elastic energy after deformation. This challenge can be addressed by using shape-memory polymers. In this work, we report a photo-crosslinkable resin suitable for 3D printing by digital light processing that yields an elastomer with latex-like properties, shape-recovery at body temperature, and degradation within 6 h under simulated intestinal conditions. Thermal shape-memory was conferred by adding stearyl(acrylate) to poly(β-aminoester)-based inks, achieving high elasticity (&gt;700 %) and strength (&gt;7.5 MPa), along with strain-hardening properties.</div></div>\",\"PeriodicalId\":14187,\"journal\":{\"name\":\"International Journal of Pharmaceutics\",\"volume\":\"669 \",\"pages\":\"Article 125051\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378517324012857\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378517324012857","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

为促进药物在胃肠道粘膜的渗透而设计的扩展装置在治疗性大分子的口服递送中越来越受到关注。理想的系统应该是可生物降解的,具有类似乳胶的特性,使其能够承受肠道运动而不会过早破裂,防止肠道阻塞或损伤。一种高度可折叠和弹性的装置是可取的,因为它可以通过压缩到有限的空间而装入商业胶囊。然而,这种压缩有局限性,因为设备在变形后会在储存的弹性能量的驱动下弹回其原始形状。这一挑战可以通过使用形状记忆聚合物来解决。在这项工作中,我们报告了一种适合通过数字光处理3D打印的光交联树脂,该树脂产生具有乳胶样性能的弹性体,在体温下恢复形状,并在模拟肠道条件下在6 h内降解。通过将硬脂酰(丙烯酸酯)添加到聚(β-氨基酯)基油墨中,获得了高弹性(>700 %)和强度(>7.5 MPa),以及应变硬化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
4D printing of biodegradable intestinal drug delivery devices with shape-memory effect
Expanding devices designed to physically facilitate the permeation of drugs across the gastrointestinal mucosa are gaining attention for the oral delivery of therapeutic macromolecules. The ideal system should be biodegradable with latex-like properties, allowing it to withstand gut movement without breaking prematurely and preventing intestinal obstruction or damage. A highly foldable and elastic device is desirable because it can fit into commercial capsules by being compressed into confined spaces. However, this compression has limits due to the device’s tendency to spring back to its original shape driven by stored elastic energy after deformation. This challenge can be addressed by using shape-memory polymers. In this work, we report a photo-crosslinkable resin suitable for 3D printing by digital light processing that yields an elastomer with latex-like properties, shape-recovery at body temperature, and degradation within 6 h under simulated intestinal conditions. Thermal shape-memory was conferred by adding stearyl(acrylate) to poly(β-aminoester)-based inks, achieving high elasticity (>700 %) and strength (>7.5 MPa), along with strain-hardening properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.70
自引率
8.60%
发文量
951
审稿时长
72 days
期刊介绍: The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.
期刊最新文献
Follicle-stimulating hormone peptide-conjugated liposomes in the treatment of epithelial ovarian cancer through the induction of M2-to-M1 macrophage repolarization. Harnessing the power of inorganic nanoparticles for the management of TNBC. Stability and recrystallization of amorphous solid dispersions prepared by hot-melt extrusion and spray drying. Targeted nasal delivery of LNP-mRNAs aerosolised by Rayleigh breakup technology. Challenges and opportunities in targeting epigenetic mechanisms for pulmonary arterial hypertension treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1