Yue Yan , Yiting Gong , Xiaohui Liang , Qingyi Xiong, Jiayi Lin, Ye Wu, Lijun Zhang, Hongzhuan Chen, Jinmei Jin, Xin Luan
{"title":"解码β-连环蛋白相关蛋白-蛋白相互作用:新兴的癌症治疗机会。","authors":"Yue Yan , Yiting Gong , Xiaohui Liang , Qingyi Xiong, Jiayi Lin, Ye Wu, Lijun Zhang, Hongzhuan Chen, Jinmei Jin, Xin Luan","doi":"10.1016/j.bbcan.2024.189232","DOIUrl":null,"url":null,"abstract":"<div><div>The hyperactive Wnt/β-catenin signaling circuit has been proven to be closely related to the progression of various cancers, with β-catenin serving as a central regulator of pro-tumorigenic processes. Preclinical evidences strongly support β-catenin as a promising therapeutic target. However, it has long been considered “undruggable” due to challenges such as the lack of crystal structures for its N- and C-terminal domains, high mutation rates, and limited availability of inhibitors. Notably, the network of β-catenin-associated protein-protein interactions (PPIs) is vital in the progression of multiple diseases. These interactions form a cancer-specific network that participates in all phases of oncogenesis, from cell metastasis to immunosuppressive microenvironment formation. Thus, researches on these PPIs are essential for unraveling the molecular mechanisms behind tumors with aberrant β-catenin activation, as well as for developing new targeted therapies. In this review, we delve into how β-catenin's PPIs orchestrate cancer progression and highlight biological and clinical dilemmas, proposing frontier technologies and potential challenges in targeting β-catenin for cancer therapy.</div></div>","PeriodicalId":8782,"journal":{"name":"Biochimica et biophysica acta. Reviews on cancer","volume":"1880 1","pages":"Article 189232"},"PeriodicalIF":9.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoding β-catenin associated protein-protein interactions: Emerging cancer therapeutic opportunities\",\"authors\":\"Yue Yan , Yiting Gong , Xiaohui Liang , Qingyi Xiong, Jiayi Lin, Ye Wu, Lijun Zhang, Hongzhuan Chen, Jinmei Jin, Xin Luan\",\"doi\":\"10.1016/j.bbcan.2024.189232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The hyperactive Wnt/β-catenin signaling circuit has been proven to be closely related to the progression of various cancers, with β-catenin serving as a central regulator of pro-tumorigenic processes. Preclinical evidences strongly support β-catenin as a promising therapeutic target. However, it has long been considered “undruggable” due to challenges such as the lack of crystal structures for its N- and C-terminal domains, high mutation rates, and limited availability of inhibitors. Notably, the network of β-catenin-associated protein-protein interactions (PPIs) is vital in the progression of multiple diseases. These interactions form a cancer-specific network that participates in all phases of oncogenesis, from cell metastasis to immunosuppressive microenvironment formation. Thus, researches on these PPIs are essential for unraveling the molecular mechanisms behind tumors with aberrant β-catenin activation, as well as for developing new targeted therapies. In this review, we delve into how β-catenin's PPIs orchestrate cancer progression and highlight biological and clinical dilemmas, proposing frontier technologies and potential challenges in targeting β-catenin for cancer therapy.</div></div>\",\"PeriodicalId\":8782,\"journal\":{\"name\":\"Biochimica et biophysica acta. Reviews on cancer\",\"volume\":\"1880 1\",\"pages\":\"Article 189232\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Reviews on cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304419X2400163X\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Reviews on cancer","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304419X2400163X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Decoding β-catenin associated protein-protein interactions: Emerging cancer therapeutic opportunities
The hyperactive Wnt/β-catenin signaling circuit has been proven to be closely related to the progression of various cancers, with β-catenin serving as a central regulator of pro-tumorigenic processes. Preclinical evidences strongly support β-catenin as a promising therapeutic target. However, it has long been considered “undruggable” due to challenges such as the lack of crystal structures for its N- and C-terminal domains, high mutation rates, and limited availability of inhibitors. Notably, the network of β-catenin-associated protein-protein interactions (PPIs) is vital in the progression of multiple diseases. These interactions form a cancer-specific network that participates in all phases of oncogenesis, from cell metastasis to immunosuppressive microenvironment formation. Thus, researches on these PPIs are essential for unraveling the molecular mechanisms behind tumors with aberrant β-catenin activation, as well as for developing new targeted therapies. In this review, we delve into how β-catenin's PPIs orchestrate cancer progression and highlight biological and clinical dilemmas, proposing frontier technologies and potential challenges in targeting β-catenin for cancer therapy.
期刊介绍:
Biochimica et Biophysica Acta (BBA) - Reviews on Cancer encompasses the entirety of cancer biology and biochemistry, emphasizing oncogenes and tumor suppressor genes, growth-related cell cycle control signaling, carcinogenesis mechanisms, cell transformation, immunologic control mechanisms, genetics of human (mammalian) cancer, control of cell proliferation, genetic and molecular control of organismic development, rational anti-tumor drug design. It publishes mini-reviews and full reviews.