基于机器学习的纳米结构性能优化:进展与展望

IF 4.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Engineering Analysis with Boundary Elements Pub Date : 2025-02-01 DOI:10.1016/j.enganabound.2024.106063
Nurul Akmal Che Lah
{"title":"基于机器学习的纳米结构性能优化:进展与展望","authors":"Nurul Akmal Che Lah","doi":"10.1016/j.enganabound.2024.106063","DOIUrl":null,"url":null,"abstract":"<div><div>Nanostructures play a vast role in the current Internet of NanoThings (IoNT) era due to remarkable properties and features that precisely impart their desired application functions in catalysis, energy and other fields. The exploration in understanding their minute features caused by the flexibility of compositional and complex atomic arrangement from the synthesis reaction widely opens for the in-depth discovery of their search space such as particle size, morphology and structures that controlled the characteristics. A wide range of possible compositions and various lattice atomic arrangements combined with small particle size distribution and large surface area create grand challenges to copy/differentiate their corresponding specific properties. Thus, the employment of machine learning (ML)-based strategies using the closed-loop experimental data from the nanostructure synthesis to help navigate and optimise for the large classes of data attributes related to the size, morphology and other properties from the trained model are reviewed. The data attributes are assisted by discussions of the selected case studies from the recent literature that highlight different condition nanostructures. The review concludes with a discussion of perspectives on the major challenges in the implementation of ML data-driven design in the field of nanostructure synthesis.</div></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"171 ","pages":"Article 106063"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Properties optimisation of nanostructures via machine learning: Progress and perspective\",\"authors\":\"Nurul Akmal Che Lah\",\"doi\":\"10.1016/j.enganabound.2024.106063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nanostructures play a vast role in the current Internet of NanoThings (IoNT) era due to remarkable properties and features that precisely impart their desired application functions in catalysis, energy and other fields. The exploration in understanding their minute features caused by the flexibility of compositional and complex atomic arrangement from the synthesis reaction widely opens for the in-depth discovery of their search space such as particle size, morphology and structures that controlled the characteristics. A wide range of possible compositions and various lattice atomic arrangements combined with small particle size distribution and large surface area create grand challenges to copy/differentiate their corresponding specific properties. Thus, the employment of machine learning (ML)-based strategies using the closed-loop experimental data from the nanostructure synthesis to help navigate and optimise for the large classes of data attributes related to the size, morphology and other properties from the trained model are reviewed. The data attributes are assisted by discussions of the selected case studies from the recent literature that highlight different condition nanostructures. The review concludes with a discussion of perspectives on the major challenges in the implementation of ML data-driven design in the field of nanostructure synthesis.</div></div>\",\"PeriodicalId\":51039,\"journal\":{\"name\":\"Engineering Analysis with Boundary Elements\",\"volume\":\"171 \",\"pages\":\"Article 106063\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Analysis with Boundary Elements\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955799724005368\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Analysis with Boundary Elements","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955799724005368","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

纳米结构在当前的纳米物联网(IoNT)时代发挥着巨大的作用,由于其显著的性质和特征,精确地赋予其在催化,能源和其他领域所需的应用功能。从合成反应中对其组成的灵活性和复杂的原子排列所引起的微小特征的探索,为深入发现其粒径、形态和结构等控制特征的搜索空间打开了广阔的大门。广泛的可能组成和各种晶格原子排列,结合小颗粒尺寸分布和大表面积,给复制/区分其相应的特定性质带来了巨大的挑战。因此,本文回顾了使用来自纳米结构合成的闭环实验数据的基于机器学习(ML)的策略,以帮助导航和优化与训练模型的大小、形态和其他属性相关的大类数据属性。数据属性是由最近的文献,突出不同条件的纳米结构选定的案例研究的讨论协助。本文最后讨论了在纳米结构合成领域实现机器学习数据驱动设计的主要挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Properties optimisation of nanostructures via machine learning: Progress and perspective
Nanostructures play a vast role in the current Internet of NanoThings (IoNT) era due to remarkable properties and features that precisely impart their desired application functions in catalysis, energy and other fields. The exploration in understanding their minute features caused by the flexibility of compositional and complex atomic arrangement from the synthesis reaction widely opens for the in-depth discovery of their search space such as particle size, morphology and structures that controlled the characteristics. A wide range of possible compositions and various lattice atomic arrangements combined with small particle size distribution and large surface area create grand challenges to copy/differentiate their corresponding specific properties. Thus, the employment of machine learning (ML)-based strategies using the closed-loop experimental data from the nanostructure synthesis to help navigate and optimise for the large classes of data attributes related to the size, morphology and other properties from the trained model are reviewed. The data attributes are assisted by discussions of the selected case studies from the recent literature that highlight different condition nanostructures. The review concludes with a discussion of perspectives on the major challenges in the implementation of ML data-driven design in the field of nanostructure synthesis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Analysis with Boundary Elements
Engineering Analysis with Boundary Elements 工程技术-工程:综合
CiteScore
5.50
自引率
18.20%
发文量
368
审稿时长
56 days
期刊介绍: This journal is specifically dedicated to the dissemination of the latest developments of new engineering analysis techniques using boundary elements and other mesh reduction methods. Boundary element (BEM) and mesh reduction methods (MRM) are very active areas of research with the techniques being applied to solve increasingly complex problems. The journal stresses the importance of these applications as well as their computational aspects, reliability and robustness. The main criteria for publication will be the originality of the work being reported, its potential usefulness and applications of the methods to new fields. In addition to regular issues, the journal publishes a series of special issues dealing with specific areas of current research. The journal has, for many years, provided a channel of communication between academics and industrial researchers working in mesh reduction methods Fields Covered: • Boundary Element Methods (BEM) • Mesh Reduction Methods (MRM) • Meshless Methods • Integral Equations • Applications of BEM/MRM in Engineering • Numerical Methods related to BEM/MRM • Computational Techniques • Combination of Different Methods • Advanced Formulations.
期刊最新文献
Multi-scale feature fusion quantum depthwise Convolutional Neural Networks for text classification The selection of shape parameter and fictitious radius for RBF collocation method using the modified Franke formula and effective condition number The three-dimensional elastoplastic analysis of bi-directional functionally graded materials using a meshfree global radial basis reproducing kernel particle method Total Lagrangian smoothed particle hydrodynamics for large-strain elastoplasticity with particle resolution refinement using an anisotropic Lagrangian kernel Zonal free element method for solving nonlinear transient heat conduction problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1