一项深入的银鲑(Oncorhynchus kisutch)卵巢卵泡蛋白质组揭示了从初级生长到次级生长过渡过程中多种细胞过程的协调变化。

IF 3.4 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Proteomics Pub Date : 2024-12-08 DOI:10.1002/pmic.202400311
Emma Timmins-Schiffman, Jennifer Telish, Chelsea Field, Chris Monson, José M Guzmán, Brook L Nunn, Graham Young, Kristy Forsgren
{"title":"一项深入的银鲑(Oncorhynchus kisutch)卵巢卵泡蛋白质组揭示了从初级生长到次级生长过渡过程中多种细胞过程的协调变化。","authors":"Emma Timmins-Schiffman, Jennifer Telish, Chelsea Field, Chris Monson, José M Guzmán, Brook L Nunn, Graham Young, Kristy Forsgren","doi":"10.1002/pmic.202400311","DOIUrl":null,"url":null,"abstract":"<p><p>Teleost fishes are a highly diverse, ecologically essential group of aquatic vertebrates that include coho salmon (Oncorhynchus kisutch). Coho are semelparous and all ovarian follicles develop synchronously. Owing to their ubiquitous distribution, teleosts provide critical sources of food worldwide through subsistence, commercial fisheries, and aquaculture. Enhancement of hatchery practices requires detailed knowledge of teleost reproductive physiology. Despite decades of research on teleost reproductive processes, an in-depth proteome of teleost ovarian development has yet to be generated. We have described a coho salmon ovarian proteome of over 5700 proteins, generated with data independent acquisition, revealing the proteins that change through the transition from primary to secondary ovarian follicle development. This transition is critical during the onset of puberty and for determining egg quality and embryonic development. Primary follicle development was marked by differential abundances of proteins in carbohydrate metabolism, protein turnover, and the complement pathway, suggesting elevated metabolism as the follicles develop through stages of oogenesis. The greatest proteomic shift occurred during the transition from primary to secondary follicle growth, with increased abundance of proteins underlying cortical alveoli formation, extracellular matrix reorganization, iron binding, and cell-cell signaling. This work provides a foundation for identifying biomarkers of salmon oocyte stage and quality.</p>","PeriodicalId":224,"journal":{"name":"Proteomics","volume":" ","pages":"e202400311"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An In-Depth Coho Salmon (Oncorhynchus kisutch) Ovarian Follicle Proteome Reveals Coordinated Changes Across Diverse Cellular Processes during the Transition From Primary to Secondary Growth.\",\"authors\":\"Emma Timmins-Schiffman, Jennifer Telish, Chelsea Field, Chris Monson, José M Guzmán, Brook L Nunn, Graham Young, Kristy Forsgren\",\"doi\":\"10.1002/pmic.202400311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Teleost fishes are a highly diverse, ecologically essential group of aquatic vertebrates that include coho salmon (Oncorhynchus kisutch). Coho are semelparous and all ovarian follicles develop synchronously. Owing to their ubiquitous distribution, teleosts provide critical sources of food worldwide through subsistence, commercial fisheries, and aquaculture. Enhancement of hatchery practices requires detailed knowledge of teleost reproductive physiology. Despite decades of research on teleost reproductive processes, an in-depth proteome of teleost ovarian development has yet to be generated. We have described a coho salmon ovarian proteome of over 5700 proteins, generated with data independent acquisition, revealing the proteins that change through the transition from primary to secondary ovarian follicle development. This transition is critical during the onset of puberty and for determining egg quality and embryonic development. Primary follicle development was marked by differential abundances of proteins in carbohydrate metabolism, protein turnover, and the complement pathway, suggesting elevated metabolism as the follicles develop through stages of oogenesis. The greatest proteomic shift occurred during the transition from primary to secondary follicle growth, with increased abundance of proteins underlying cortical alveoli formation, extracellular matrix reorganization, iron binding, and cell-cell signaling. This work provides a foundation for identifying biomarkers of salmon oocyte stage and quality.</p>\",\"PeriodicalId\":224,\"journal\":{\"name\":\"Proteomics\",\"volume\":\" \",\"pages\":\"e202400311\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proteomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pmic.202400311\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pmic.202400311","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

硬骨鱼是一种高度多样化的生态重要水生脊椎动物,包括银鲑(Oncorhynchus kisutch)。Coho是半产的,所有的卵巢卵泡同步发育。由于硬骨鱼无处不在,它们通过生计、商业渔业和水产养殖在世界范围内提供了重要的食物来源。加强孵化场实践需要对硬骨鱼生殖生理学有详细的了解。尽管对硬骨鱼生殖过程进行了数十年的研究,但硬骨鱼卵巢发育的深入蛋白质组尚未产生。我们描述了一个超过5700个蛋白质的银鲑卵巢蛋白质组,通过数据独立采集生成,揭示了从初级到次级卵巢卵泡发育转变的蛋白质。这种转变在青春期开始时至关重要,并决定卵子质量和胚胎发育。初级卵泡发育以碳水化合物代谢、蛋白质转换和补体途径中不同丰度的蛋白质为标志,表明随着卵泡在卵子发生阶段的发育,代谢水平升高。最大的蛋白质组学变化发生在从初级到次级卵泡生长的转变过程中,随着皮层肺泡形成、细胞外基质重组、铁结合和细胞-细胞信号传导的蛋白质丰度增加。本工作为鉴定鲑鱼卵母细胞分期和质量的生物标志物奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An In-Depth Coho Salmon (Oncorhynchus kisutch) Ovarian Follicle Proteome Reveals Coordinated Changes Across Diverse Cellular Processes during the Transition From Primary to Secondary Growth.

Teleost fishes are a highly diverse, ecologically essential group of aquatic vertebrates that include coho salmon (Oncorhynchus kisutch). Coho are semelparous and all ovarian follicles develop synchronously. Owing to their ubiquitous distribution, teleosts provide critical sources of food worldwide through subsistence, commercial fisheries, and aquaculture. Enhancement of hatchery practices requires detailed knowledge of teleost reproductive physiology. Despite decades of research on teleost reproductive processes, an in-depth proteome of teleost ovarian development has yet to be generated. We have described a coho salmon ovarian proteome of over 5700 proteins, generated with data independent acquisition, revealing the proteins that change through the transition from primary to secondary ovarian follicle development. This transition is critical during the onset of puberty and for determining egg quality and embryonic development. Primary follicle development was marked by differential abundances of proteins in carbohydrate metabolism, protein turnover, and the complement pathway, suggesting elevated metabolism as the follicles develop through stages of oogenesis. The greatest proteomic shift occurred during the transition from primary to secondary follicle growth, with increased abundance of proteins underlying cortical alveoli formation, extracellular matrix reorganization, iron binding, and cell-cell signaling. This work provides a foundation for identifying biomarkers of salmon oocyte stage and quality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proteomics
Proteomics 生物-生化研究方法
CiteScore
6.30
自引率
5.90%
发文量
193
审稿时长
3 months
期刊介绍: PROTEOMICS is the premier international source for information on all aspects of applications and technologies, including software, in proteomics and other "omics". The journal includes but is not limited to proteomics, genomics, transcriptomics, metabolomics and lipidomics, and systems biology approaches. Papers describing novel applications of proteomics and integration of multi-omics data and approaches are especially welcome.
期刊最新文献
Proteomic Insight Into Alzheimer's Disease Pathogenesis Pathways. The Omics-Driven Machine Learning Path to Cost-Effective Precision Medicine in Chronic Kidney Disease. The Proteomic Landscape of the Coronary Accessible Heart Cell Surfaceome. Decoding Microbial Plastic Colonisation: Multi-Omic Insights Into the Fast-Evolving Dynamics of Early-Stage Biofilms. Fecal Metaproteomics as a Tool to Monitor Functional Modifications Induced in the Gut Microbiota by Ketogenic Diet: A Case Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1