从沉默到歌唱:睾酮引发雌性金丝雀HVC的广泛转录变化。

IF 3.3 4区 医学 Q2 ENDOCRINOLOGY & METABOLISM Journal of Neuroendocrinology Pub Date : 2024-12-08 DOI:10.1111/jne.13476
Meng-Ching Ko, Carolina Frankl-Vilches, Antje Bakker, Nina Sohnius-Wilhelmi, Pepe Alcami, Manfred Gahr
{"title":"从沉默到歌唱:睾酮引发雌性金丝雀HVC的广泛转录变化。","authors":"Meng-Ching Ko, Carolina Frankl-Vilches, Antje Bakker, Nina Sohnius-Wilhelmi, Pepe Alcami, Manfred Gahr","doi":"10.1111/jne.13476","DOIUrl":null,"url":null,"abstract":"<p><p>Seasonal song production in canaries is influenced by gonadal hormones, but the molecular mechanisms underlying testosterone-induced song development in adult female canaries, which rarely sing naturally, remain poorly understood. We explored testosterone-induced song development in adult female canaries by comparing gene regulatory networks in the song-controlling brain area HVC at multiple time points (1 h to 14 days) post-treatment with those of placebo-treated controls. Females began vocalizing within 4 days of testosterone treatment, with song complexity and HVC volume increasing progressively over 2 weeks. Rapid transcriptional changes involving 2739 genes preceded song initiation. Over 2 weeks, 9913 genes-approximately 64% of the canary's protein-coding genome-were differentially expressed, with 98% being transiently regulated. These genes are linked to various biological functions, with early changes at the cellular level and later changes affecting the nervous system level after prolonged hormone exposure. Our findings suggest that testosterone-induced song development is accompanied by extensive and dynamic transcriptional changes in the HVC, implicating widespread neuronal involvement. These changes underpin the gradual emergence of singing behavior, providing insights into the neural basis of seasonal behavioral patterns.</p>","PeriodicalId":16535,"journal":{"name":"Journal of Neuroendocrinology","volume":" ","pages":"e13476"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From silence to song: Testosterone triggers extensive transcriptional changes in the female canary HVC.\",\"authors\":\"Meng-Ching Ko, Carolina Frankl-Vilches, Antje Bakker, Nina Sohnius-Wilhelmi, Pepe Alcami, Manfred Gahr\",\"doi\":\"10.1111/jne.13476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Seasonal song production in canaries is influenced by gonadal hormones, but the molecular mechanisms underlying testosterone-induced song development in adult female canaries, which rarely sing naturally, remain poorly understood. We explored testosterone-induced song development in adult female canaries by comparing gene regulatory networks in the song-controlling brain area HVC at multiple time points (1 h to 14 days) post-treatment with those of placebo-treated controls. Females began vocalizing within 4 days of testosterone treatment, with song complexity and HVC volume increasing progressively over 2 weeks. Rapid transcriptional changes involving 2739 genes preceded song initiation. Over 2 weeks, 9913 genes-approximately 64% of the canary's protein-coding genome-were differentially expressed, with 98% being transiently regulated. These genes are linked to various biological functions, with early changes at the cellular level and later changes affecting the nervous system level after prolonged hormone exposure. Our findings suggest that testosterone-induced song development is accompanied by extensive and dynamic transcriptional changes in the HVC, implicating widespread neuronal involvement. These changes underpin the gradual emergence of singing behavior, providing insights into the neural basis of seasonal behavioral patterns.</p>\",\"PeriodicalId\":16535,\"journal\":{\"name\":\"Journal of Neuroendocrinology\",\"volume\":\" \",\"pages\":\"e13476\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroendocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/jne.13476\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroendocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jne.13476","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

金丝雀的季节性鸣叫受到性腺激素的影响,但在很少自然鸣叫的成年雌性金丝雀中,睾丸激素诱导鸣叫发育的分子机制尚不清楚。我们通过比较治疗后多个时间点(1小时至14天)与安慰剂治疗对照组的歌曲控制脑区HVC的基因调控网络,探索睾酮诱导成年雌性金丝雀的歌曲发育。雌性在睾酮治疗4天内开始发声,歌声复杂性和HVC体积在2周内逐渐增加。在歌曲起始之前,涉及2739个基因的快速转录变化。在两周的时间里,9913个基因(约占金丝雀蛋白质编码基因组的64%)被差异表达,其中98%被短暂调节。这些基因与各种生物功能有关,早期在细胞水平上发生变化,而在长期暴露于激素后,后期的变化影响神经系统水平。我们的研究结果表明,睾酮诱导的歌曲发育伴随着HVC中广泛和动态的转录变化,这意味着广泛的神经元参与。这些变化为歌唱行为的逐渐出现提供了基础,为季节性行为模式的神经基础提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
From silence to song: Testosterone triggers extensive transcriptional changes in the female canary HVC.

Seasonal song production in canaries is influenced by gonadal hormones, but the molecular mechanisms underlying testosterone-induced song development in adult female canaries, which rarely sing naturally, remain poorly understood. We explored testosterone-induced song development in adult female canaries by comparing gene regulatory networks in the song-controlling brain area HVC at multiple time points (1 h to 14 days) post-treatment with those of placebo-treated controls. Females began vocalizing within 4 days of testosterone treatment, with song complexity and HVC volume increasing progressively over 2 weeks. Rapid transcriptional changes involving 2739 genes preceded song initiation. Over 2 weeks, 9913 genes-approximately 64% of the canary's protein-coding genome-were differentially expressed, with 98% being transiently regulated. These genes are linked to various biological functions, with early changes at the cellular level and later changes affecting the nervous system level after prolonged hormone exposure. Our findings suggest that testosterone-induced song development is accompanied by extensive and dynamic transcriptional changes in the HVC, implicating widespread neuronal involvement. These changes underpin the gradual emergence of singing behavior, providing insights into the neural basis of seasonal behavioral patterns.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Neuroendocrinology
Journal of Neuroendocrinology 医学-内分泌学与代谢
CiteScore
6.40
自引率
6.20%
发文量
137
审稿时长
4-8 weeks
期刊介绍: Journal of Neuroendocrinology provides the principal international focus for the newest ideas in classical neuroendocrinology and its expanding interface with the regulation of behavioural, cognitive, developmental, degenerative and metabolic processes. Through the rapid publication of original manuscripts and provocative review articles, it provides essential reading for basic scientists and clinicians researching in this rapidly expanding field. In determining content, the primary considerations are excellence, relevance and novelty. While Journal of Neuroendocrinology reflects the broad scientific and clinical interests of the BSN membership, the editorial team, led by Professor Julian Mercer, ensures that the journal’s ethos, authorship, content and purpose are those expected of a leading international publication.
期刊最新文献
The exceptionally rare phenomenon of well-differentiated colon neuroendocrine tumors. DNA hypomethylation-related expression of hsa-miR-184 contributes to invasive growth of gonadotroph neuroendocrine pituitary tumors. Plasma adiponectin and biomarker-confirmed Alzheimer's disease in a tertiary memory clinic. Neuroactive steroid exposure impacts neurodevelopment: Comparison of human and rodent placental contribution. Synthesis and characterisation of DOTA-kisspeptin-10 as a potential gallium-68/lutetium-177 pan-tumour radiopharmaceutical.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1