哪些挑战阻碍了抗菌表面在牙科植入物市场的应用?

Expert review of medical devices Pub Date : 2024-12-01 Epub Date: 2024-12-11 DOI:10.1080/17434440.2024.2440061
Maria Helena R Borges, Bruna E Nagay, João Gabriel S Souza, Valentim A R Barão
{"title":"哪些挑战阻碍了抗菌表面在牙科植入物市场的应用?","authors":"Maria Helena R Borges, Bruna E Nagay, João Gabriel S Souza, Valentim A R Barão","doi":"10.1080/17434440.2024.2440061","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Implant failures resulting from peri-implant infections can have substantial consequences, underscoring the urgent need for effective strategies to prevent biofilm formation on implant surfaces. However, despite advancements in antimicrobial surface technologies, significant challenges persist in translating these innovations into clinically viable solutions.</p><p><strong>Areas covered: </strong>This article provides an overview of the limitations of current treatment protocols and explores the potential of antimicrobial surface treatments for controlling such infections. Furthermore, we highlight the importance of balancing antimicrobial efficacy with biocompatibility and mechanical stability, key factors for long-term implant performance. Finally, we address the main challenges in translating these technologies into clinical practice, including the unpredictability of long-term antimicrobial effects, regulatory compliance gaps, and methodological weaknesses in current research.</p><p><strong>Expert opinion: </strong>The development of antimicrobial surfaces holds promise for enhancing the longevity of dental implants; however, current modifications face persistent challenges, hindering their translation into the dental implant market. Future advancements should prioritize 'smart' or stimulus-responsive surfaces that can release antimicrobials on demand. This strategy aims to efficiently combat infections while minimizing the risks of cytotoxicity and antimicrobial resistance, potentially leading to more effective and clinically translatable solutions.</p>","PeriodicalId":94006,"journal":{"name":"Expert review of medical devices","volume":" ","pages":"1081-1085"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"What challenges hinder the adoption of antimicrobial surface in the dental implant market?\",\"authors\":\"Maria Helena R Borges, Bruna E Nagay, João Gabriel S Souza, Valentim A R Barão\",\"doi\":\"10.1080/17434440.2024.2440061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Implant failures resulting from peri-implant infections can have substantial consequences, underscoring the urgent need for effective strategies to prevent biofilm formation on implant surfaces. However, despite advancements in antimicrobial surface technologies, significant challenges persist in translating these innovations into clinically viable solutions.</p><p><strong>Areas covered: </strong>This article provides an overview of the limitations of current treatment protocols and explores the potential of antimicrobial surface treatments for controlling such infections. Furthermore, we highlight the importance of balancing antimicrobial efficacy with biocompatibility and mechanical stability, key factors for long-term implant performance. Finally, we address the main challenges in translating these technologies into clinical practice, including the unpredictability of long-term antimicrobial effects, regulatory compliance gaps, and methodological weaknesses in current research.</p><p><strong>Expert opinion: </strong>The development of antimicrobial surfaces holds promise for enhancing the longevity of dental implants; however, current modifications face persistent challenges, hindering their translation into the dental implant market. Future advancements should prioritize 'smart' or stimulus-responsive surfaces that can release antimicrobials on demand. This strategy aims to efficiently combat infections while minimizing the risks of cytotoxicity and antimicrobial resistance, potentially leading to more effective and clinically translatable solutions.</p>\",\"PeriodicalId\":94006,\"journal\":{\"name\":\"Expert review of medical devices\",\"volume\":\" \",\"pages\":\"1081-1085\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert review of medical devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17434440.2024.2440061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert review of medical devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17434440.2024.2440061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
What challenges hinder the adoption of antimicrobial surface in the dental implant market?

Introduction: Implant failures resulting from peri-implant infections can have substantial consequences, underscoring the urgent need for effective strategies to prevent biofilm formation on implant surfaces. However, despite advancements in antimicrobial surface technologies, significant challenges persist in translating these innovations into clinically viable solutions.

Areas covered: This article provides an overview of the limitations of current treatment protocols and explores the potential of antimicrobial surface treatments for controlling such infections. Furthermore, we highlight the importance of balancing antimicrobial efficacy with biocompatibility and mechanical stability, key factors for long-term implant performance. Finally, we address the main challenges in translating these technologies into clinical practice, including the unpredictability of long-term antimicrobial effects, regulatory compliance gaps, and methodological weaknesses in current research.

Expert opinion: The development of antimicrobial surfaces holds promise for enhancing the longevity of dental implants; however, current modifications face persistent challenges, hindering their translation into the dental implant market. Future advancements should prioritize 'smart' or stimulus-responsive surfaces that can release antimicrobials on demand. This strategy aims to efficiently combat infections while minimizing the risks of cytotoxicity and antimicrobial resistance, potentially leading to more effective and clinically translatable solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proactive esophageal cooling during radiofrequency cardiac ablation: data update including applications in very high-power short duration ablation. BComparison of supraglottic airway device vs. endotracheal intubation for initial airway management in out-of-hospital cardiac arrest: a systematic review and meta-analysis. Effects of elevated body mass index on the success of total knee and total hip arthroplasty: a comprehensive overview. Comparison of 6-lead smartphone ECG and 12-lead ECG in athletes and a genetic heart disease population. Modular cardiac rhythm management system and results of MODULAR ATP trial: an era of personalized device medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1