FaaSCtrl:无服务器平台的综合延迟控制器

IF 5.3 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Cloud Computing Pub Date : 2024-10-02 DOI:10.1109/TCC.2024.3473015
Abhisek Panda;Smruti R. Sarangi
{"title":"FaaSCtrl:无服务器平台的综合延迟控制器","authors":"Abhisek Panda;Smruti R. Sarangi","doi":"10.1109/TCC.2024.3473015","DOIUrl":null,"url":null,"abstract":"Serverless computing systems have become very popular because of their natural advantages with respect to auto-scaling, load balancing and fast distributed processing. As of today, almost all serverless systems define two QoS classes: best-effort (\n<inline-formula><tex-math>$BE$</tex-math></inline-formula>\n) and latency-sensitive (\n<inline-formula><tex-math>$LS$</tex-math></inline-formula>\n). Systems typically do not offer any latency or QoS guarantees for \n<inline-formula><tex-math>$BE$</tex-math></inline-formula>\n jobs and run them on a best-effort basis. In contrast, systems strive to minimize the processing time for \n<inline-formula><tex-math>$LS$</tex-math></inline-formula>\n jobs. This work proposes a precise definition for these job classes and argues that we need to consider a bouquet of performance metrics for serverless applications, not just a single one. We thus propose the comprehensive latency (\n<inline-formula><tex-math>$CL$</tex-math></inline-formula>\n) that comprises the mean, tail latency, median and standard deviation of a series of invocations for a given serverless function. Next, we design a system \n<i>FaaSCtrl</i>\n, whose main objective is to ensure that every component of the \n<inline-formula><tex-math>$CL$</tex-math></inline-formula>\n is within a prespecified limit for an LS application, and for BE applications, these components are minimized on a best-effort basis. Given the sheer complexity of the scheduling problem in a large multi-application setup, we use the method of surrogate functions in optimization theory to design a simpler optimization problem that relies on performance and fairness. We rigorously establish the relevance of these metrics through characterization studies. Instead of using standard approaches based on optimization theory, we use a much faster reinforcement learning (RL) based approach to tune the knobs that govern process scheduling in Linux, namely the real-time priority and the assigned number of cores. RL works well in this scenario because the benefit of a given optimization is probabilistic in nature, owing to the inherent complexity of the system. We show using rigorous experiments on a set of real-world workloads that \n<i>FaaSCtrl</i>\n achieves its objectives for both LS and BE applications and outperforms the state-of-the-art by 36.9% (for tail response latency) and 44.6% (for response latency's std. dev.) for LS applications.","PeriodicalId":13202,"journal":{"name":"IEEE Transactions on Cloud Computing","volume":"12 4","pages":"1328-1343"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FaaSCtrl: A Comprehensive-Latency Controller for Serverless Platforms\",\"authors\":\"Abhisek Panda;Smruti R. Sarangi\",\"doi\":\"10.1109/TCC.2024.3473015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Serverless computing systems have become very popular because of their natural advantages with respect to auto-scaling, load balancing and fast distributed processing. As of today, almost all serverless systems define two QoS classes: best-effort (\\n<inline-formula><tex-math>$BE$</tex-math></inline-formula>\\n) and latency-sensitive (\\n<inline-formula><tex-math>$LS$</tex-math></inline-formula>\\n). Systems typically do not offer any latency or QoS guarantees for \\n<inline-formula><tex-math>$BE$</tex-math></inline-formula>\\n jobs and run them on a best-effort basis. In contrast, systems strive to minimize the processing time for \\n<inline-formula><tex-math>$LS$</tex-math></inline-formula>\\n jobs. This work proposes a precise definition for these job classes and argues that we need to consider a bouquet of performance metrics for serverless applications, not just a single one. We thus propose the comprehensive latency (\\n<inline-formula><tex-math>$CL$</tex-math></inline-formula>\\n) that comprises the mean, tail latency, median and standard deviation of a series of invocations for a given serverless function. Next, we design a system \\n<i>FaaSCtrl</i>\\n, whose main objective is to ensure that every component of the \\n<inline-formula><tex-math>$CL$</tex-math></inline-formula>\\n is within a prespecified limit for an LS application, and for BE applications, these components are minimized on a best-effort basis. Given the sheer complexity of the scheduling problem in a large multi-application setup, we use the method of surrogate functions in optimization theory to design a simpler optimization problem that relies on performance and fairness. We rigorously establish the relevance of these metrics through characterization studies. Instead of using standard approaches based on optimization theory, we use a much faster reinforcement learning (RL) based approach to tune the knobs that govern process scheduling in Linux, namely the real-time priority and the assigned number of cores. RL works well in this scenario because the benefit of a given optimization is probabilistic in nature, owing to the inherent complexity of the system. We show using rigorous experiments on a set of real-world workloads that \\n<i>FaaSCtrl</i>\\n achieves its objectives for both LS and BE applications and outperforms the state-of-the-art by 36.9% (for tail response latency) and 44.6% (for response latency's std. dev.) for LS applications.\",\"PeriodicalId\":13202,\"journal\":{\"name\":\"IEEE Transactions on Cloud Computing\",\"volume\":\"12 4\",\"pages\":\"1328-1343\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cloud Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10704029/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cloud Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10704029/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

无服务器计算系统由于其在自动扩展、负载平衡和快速分布式处理方面的天然优势而变得非常流行。到目前为止,几乎所有无服务器系统都定义了两种QoS类:尽力而为(best-effort, $BE$)和延迟敏感(latency-sensitive, $LS$)。系统通常不会为$BE$作业提供任何延迟或QoS保证,并且会尽最大努力运行它们。相反,系统努力最小化$LS$作业的处理时间。这项工作提出了这些作业类的精确定义,并认为我们需要考虑无服务器应用程序的一系列性能指标,而不仅仅是一个。因此,我们提出了综合延迟($CL$),它包括给定无服务器函数的一系列调用的平均值、尾部延迟、中位数和标准差。接下来,我们设计一个FaaSCtrl系统,其主要目标是确保$CL$的每个组件都在LS应用程序的预先指定的限制范围内,而对于BE应用程序,这些组件将尽最大努力最小化。考虑到大型多应用程序设置中调度问题的复杂性,我们使用优化理论中的代理函数方法来设计一个依赖于性能和公平性的更简单的优化问题。我们通过表征研究严格地建立了这些指标的相关性。我们没有使用基于优化理论的标准方法,而是使用一种更快的基于强化学习(RL)的方法来调整Linux中控制进程调度的旋钮,即实时优先级和分配的内核数量。强化学习在这种情况下工作得很好,因为给定优化的好处本质上是概率性的,这是由于系统固有的复杂性。我们在一组真实工作负载上进行了严格的实验,结果表明FaaSCtrl在LS和BE应用程序上都达到了目标,并且在LS应用程序上的性能比最先进的技术高出36.9%(对于尾部响应延迟)和44.6%(对于响应延迟的std. dev)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FaaSCtrl: A Comprehensive-Latency Controller for Serverless Platforms
Serverless computing systems have become very popular because of their natural advantages with respect to auto-scaling, load balancing and fast distributed processing. As of today, almost all serverless systems define two QoS classes: best-effort ( $BE$ ) and latency-sensitive ( $LS$ ). Systems typically do not offer any latency or QoS guarantees for $BE$ jobs and run them on a best-effort basis. In contrast, systems strive to minimize the processing time for $LS$ jobs. This work proposes a precise definition for these job classes and argues that we need to consider a bouquet of performance metrics for serverless applications, not just a single one. We thus propose the comprehensive latency ( $CL$ ) that comprises the mean, tail latency, median and standard deviation of a series of invocations for a given serverless function. Next, we design a system FaaSCtrl , whose main objective is to ensure that every component of the $CL$ is within a prespecified limit for an LS application, and for BE applications, these components are minimized on a best-effort basis. Given the sheer complexity of the scheduling problem in a large multi-application setup, we use the method of surrogate functions in optimization theory to design a simpler optimization problem that relies on performance and fairness. We rigorously establish the relevance of these metrics through characterization studies. Instead of using standard approaches based on optimization theory, we use a much faster reinforcement learning (RL) based approach to tune the knobs that govern process scheduling in Linux, namely the real-time priority and the assigned number of cores. RL works well in this scenario because the benefit of a given optimization is probabilistic in nature, owing to the inherent complexity of the system. We show using rigorous experiments on a set of real-world workloads that FaaSCtrl achieves its objectives for both LS and BE applications and outperforms the state-of-the-art by 36.9% (for tail response latency) and 44.6% (for response latency's std. dev.) for LS applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Cloud Computing
IEEE Transactions on Cloud Computing Computer Science-Software
CiteScore
9.40
自引率
6.20%
发文量
167
期刊介绍: The IEEE Transactions on Cloud Computing (TCC) is dedicated to the multidisciplinary field of cloud computing. It is committed to the publication of articles that present innovative research ideas, application results, and case studies in cloud computing, focusing on key technical issues related to theory, algorithms, systems, applications, and performance.
期刊最新文献
COCSN: A Multi-Tiered Cascaded Optical Circuit Switching Network for Data Center Aggregate Monitoring for Geo-Distributed Kubernetes Cluster Federations Group Formation and Sampling in Group-Based Hierarchical Federated Learning HEXO: Offloading Long-Running Compute- and Memory-Intensive Workloads on Low-Cost, Low-Power Embedded Systems Joint Offloading and Resource Allocation for Collaborative Cloud Computing With Dependent Subtask Scheduling on Multi-Core Server
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1