几何知识图嵌入模型的表达性分析与增强框架

IF 8.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Knowledge and Data Engineering Pub Date : 2024-10-28 DOI:10.1109/TKDE.2024.3486915
Tengwei Song;Long Yin;Yang Liu;Long Liao;Jie Luo;Zhiqiang Xu
{"title":"几何知识图嵌入模型的表达性分析与增强框架","authors":"Tengwei Song;Long Yin;Yang Liu;Long Liao;Jie Luo;Zhiqiang Xu","doi":"10.1109/TKDE.2024.3486915","DOIUrl":null,"url":null,"abstract":"Existing geometric knowledge graph embedding methods employ various relational transformations, such as translation, rotation, and projection, to model different relation patterns, which aims to enhance the expressiveness of models. In contrast to current approaches that treat the expressiveness of the model as a binary issue, we aim to delve deeper into analyzing the level of difficulty in which geometric knowledge graph embedding models can represent relation patterns. In this paper, we provide a theoretical analysis framework that measures the expressiveness of the model in relation patterns by quantifying the size of the solution space of linear equation systems. Additionally, we propose a mechanism for imposing relational constraints on geometric knowledge graph embedding models by setting “traps” near relational optimal solutions, which enables the model to better converge to the optimal solution. Empirically, we analyze and compare several typical knowledge graph embedding models with different geometric algebras, revealing that some models have insufficient solution space due to their design, which leads to performance weaknesses. We also demonstrate that the proposed relational constraint operations can improve the performance of certain relation patterns. The experimental results on public benchmarks and relation pattern specified dataset are consistent with our theoretical analysis.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 1","pages":"306-318"},"PeriodicalIF":8.9000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expressiveness Analysis and Enhancing Framework for Geometric Knowledge Graph Embedding Models\",\"authors\":\"Tengwei Song;Long Yin;Yang Liu;Long Liao;Jie Luo;Zhiqiang Xu\",\"doi\":\"10.1109/TKDE.2024.3486915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing geometric knowledge graph embedding methods employ various relational transformations, such as translation, rotation, and projection, to model different relation patterns, which aims to enhance the expressiveness of models. In contrast to current approaches that treat the expressiveness of the model as a binary issue, we aim to delve deeper into analyzing the level of difficulty in which geometric knowledge graph embedding models can represent relation patterns. In this paper, we provide a theoretical analysis framework that measures the expressiveness of the model in relation patterns by quantifying the size of the solution space of linear equation systems. Additionally, we propose a mechanism for imposing relational constraints on geometric knowledge graph embedding models by setting “traps” near relational optimal solutions, which enables the model to better converge to the optimal solution. Empirically, we analyze and compare several typical knowledge graph embedding models with different geometric algebras, revealing that some models have insufficient solution space due to their design, which leads to performance weaknesses. We also demonstrate that the proposed relational constraint operations can improve the performance of certain relation patterns. The experimental results on public benchmarks and relation pattern specified dataset are consistent with our theoretical analysis.\",\"PeriodicalId\":13496,\"journal\":{\"name\":\"IEEE Transactions on Knowledge and Data Engineering\",\"volume\":\"37 1\",\"pages\":\"306-318\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Knowledge and Data Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10736650/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10736650/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

现有的几何知识图嵌入方法采用平移、旋转、投影等关系变换对不同的关系模式进行建模,以增强模型的表达能力。与目前将模型的表达性视为二元问题的方法相反,我们的目标是更深入地分析几何知识图嵌入模型表示关系模式的困难程度。在本文中,我们提供了一个理论分析框架,通过量化线性方程组的解空间的大小来衡量模型在关系模式中的可表达性。此外,我们提出了一种通过在关系最优解附近设置“陷阱”对几何知识图嵌入模型施加关系约束的机制,使模型能够更好地收敛到最优解。实证分析和比较了几种具有不同几何代数的典型知识图嵌入模型,揭示了一些模型由于其设计导致解空间不足,从而导致性能不足。我们还证明了所提出的关系约束操作可以提高某些关系模式的性能。在公共基准和关系模式指定数据集上的实验结果与我们的理论分析一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Expressiveness Analysis and Enhancing Framework for Geometric Knowledge Graph Embedding Models
Existing geometric knowledge graph embedding methods employ various relational transformations, such as translation, rotation, and projection, to model different relation patterns, which aims to enhance the expressiveness of models. In contrast to current approaches that treat the expressiveness of the model as a binary issue, we aim to delve deeper into analyzing the level of difficulty in which geometric knowledge graph embedding models can represent relation patterns. In this paper, we provide a theoretical analysis framework that measures the expressiveness of the model in relation patterns by quantifying the size of the solution space of linear equation systems. Additionally, we propose a mechanism for imposing relational constraints on geometric knowledge graph embedding models by setting “traps” near relational optimal solutions, which enables the model to better converge to the optimal solution. Empirically, we analyze and compare several typical knowledge graph embedding models with different geometric algebras, revealing that some models have insufficient solution space due to their design, which leads to performance weaknesses. We also demonstrate that the proposed relational constraint operations can improve the performance of certain relation patterns. The experimental results on public benchmarks and relation pattern specified dataset are consistent with our theoretical analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
期刊最新文献
2024 Reviewers List Web-FTP: A Feature Transferring-Based Pre-Trained Model for Web Attack Detection Network-to-Network: Self-Supervised Network Representation Learning via Position Prediction AEGK: Aligned Entropic Graph Kernels Through Continuous-Time Quantum Walks Contextual Inference From Sparse Shopping Transactions Based on Motif Patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1