结合计算和实验研究,以获得与模型微孔催化剂正丁烷异构化的机理见解

IF 4.4 3区 化学 Q2 CHEMISTRY, PHYSICAL Catalysis Science & Technology Pub Date : 2024-11-05 DOI:10.1039/d4cy01035c
Matthew E. Potter , Lucas Spiske , Philipp N. Plessow , Evangeline B. McShane , Marina Carravetta , Alice E. Oakley , Takudzwa Bere , James H. Carter , Bart D. Vandegehuchte , Kamila M. Kaźmierczak , Felix Studt , Robert Raja
{"title":"结合计算和实验研究,以获得与模型微孔催化剂正丁烷异构化的机理见解","authors":"Matthew E. Potter ,&nbsp;Lucas Spiske ,&nbsp;Philipp N. Plessow ,&nbsp;Evangeline B. McShane ,&nbsp;Marina Carravetta ,&nbsp;Alice E. Oakley ,&nbsp;Takudzwa Bere ,&nbsp;James H. Carter ,&nbsp;Bart D. Vandegehuchte ,&nbsp;Kamila M. Kaźmierczak ,&nbsp;Felix Studt ,&nbsp;Robert Raja","doi":"10.1039/d4cy01035c","DOIUrl":null,"url":null,"abstract":"<div><div>Microporous solid acid catalysts are widely used in industrial hydrocarbon transformations in both the fuels and petrochemical industries. The specific choice of microporous framework often dictates the acidic properties of the system, such as acid site strength and concentration. In this work we have explored the influence of acid site concentration on butane isomerisation activity and the mechanistic pathway by controlling the quantity of magnesium doped into an aluminophosphate, keeping the acid site strength and framework topology constant. By combining experimental kinetic studies, and theoretical mechanistic studies, we conclude that isobutane formation, from <em>n</em>-butane, predominantly proceeds through a bimolecular pathway. Specifically, the activity of the system is strongly linked to the presence of alkenes, and herein the precise mechanistic roles of the alkenes are explored.</div></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":"14 24","pages":"Pages 7140-7151"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/cy/d4cy01035c?page=search","citationCount":"0","resultStr":"{\"title\":\"Combining computational and experimental studies to gain mechanistic insights for n-butane isomerisation with a model microporous catalyst†\",\"authors\":\"Matthew E. Potter ,&nbsp;Lucas Spiske ,&nbsp;Philipp N. Plessow ,&nbsp;Evangeline B. McShane ,&nbsp;Marina Carravetta ,&nbsp;Alice E. Oakley ,&nbsp;Takudzwa Bere ,&nbsp;James H. Carter ,&nbsp;Bart D. Vandegehuchte ,&nbsp;Kamila M. Kaźmierczak ,&nbsp;Felix Studt ,&nbsp;Robert Raja\",\"doi\":\"10.1039/d4cy01035c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Microporous solid acid catalysts are widely used in industrial hydrocarbon transformations in both the fuels and petrochemical industries. The specific choice of microporous framework often dictates the acidic properties of the system, such as acid site strength and concentration. In this work we have explored the influence of acid site concentration on butane isomerisation activity and the mechanistic pathway by controlling the quantity of magnesium doped into an aluminophosphate, keeping the acid site strength and framework topology constant. By combining experimental kinetic studies, and theoretical mechanistic studies, we conclude that isobutane formation, from <em>n</em>-butane, predominantly proceeds through a bimolecular pathway. Specifically, the activity of the system is strongly linked to the presence of alkenes, and herein the precise mechanistic roles of the alkenes are explored.</div></div>\",\"PeriodicalId\":66,\"journal\":{\"name\":\"Catalysis Science & Technology\",\"volume\":\"14 24\",\"pages\":\"Pages 7140-7151\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/cy/d4cy01035c?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Science & Technology\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S2044475324006026\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2044475324006026","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

微孔固体酸催化剂广泛应用于燃料和石油化工行业的工业烃类转化。微孔框架的具体选择通常决定了体系的酸性性质,如酸位强度和浓度。在这项工作中,我们通过控制磷酸铝中镁的掺杂量,保持酸位强度和框架拓扑不变,探索了酸位浓度对丁烷异构化活性的影响和机制途径。通过实验动力学研究和理论机理研究相结合,我们得出结论,正丁烷生成异丁烷主要通过双分子途径进行。具体地说,该体系的活性与烯烃的存在密切相关,在此探讨了烯烃的精确机制作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combining computational and experimental studies to gain mechanistic insights for n-butane isomerisation with a model microporous catalyst†
Microporous solid acid catalysts are widely used in industrial hydrocarbon transformations in both the fuels and petrochemical industries. The specific choice of microporous framework often dictates the acidic properties of the system, such as acid site strength and concentration. In this work we have explored the influence of acid site concentration on butane isomerisation activity and the mechanistic pathway by controlling the quantity of magnesium doped into an aluminophosphate, keeping the acid site strength and framework topology constant. By combining experimental kinetic studies, and theoretical mechanistic studies, we conclude that isobutane formation, from n-butane, predominantly proceeds through a bimolecular pathway. Specifically, the activity of the system is strongly linked to the presence of alkenes, and herein the precise mechanistic roles of the alkenes are explored.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catalysis Science & Technology
Catalysis Science & Technology CHEMISTRY, PHYSICAL-
CiteScore
8.70
自引率
6.00%
发文量
587
审稿时长
1.5 months
期刊介绍: A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis. Editor-in-chief: Bert Weckhuysen Impact factor: 5.0 Time to first decision (peer reviewed only): 31 days
期刊最新文献
Back cover Polystyrene-bound AlCl3 - a catalyst for the solvent-free synthesis of aryl-substituted tetrazoles. Back cover Inside back cover Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1