Jean Marie Kepdieu, Gustave Tchanang, Jacques Romain Njimou, Cyprien Joel Ekani, Chantale Njiomou Djangang, Sanda Andrada Maicaneanu, Diego Rosso
{"title":"水稻壳基纳米二氧化硅-近晶粘土复合材料对染料碱性蓝9吸附的全因子设计数学模型","authors":"Jean Marie Kepdieu, Gustave Tchanang, Jacques Romain Njimou, Cyprien Joel Ekani, Chantale Njiomou Djangang, Sanda Andrada Maicaneanu, Diego Rosso","doi":"10.1007/s11270-024-07676-3","DOIUrl":null,"url":null,"abstract":"<div><p>This study focuses on utilizing Oryza sativa husk (rice husk) to produce a nanosilica-doped smectitic clay (Os-Sm) for the adsorption of Basic Blue 9 from aqueous solutions. Response surface methodology was employed to investigate the impact of dye concentration (10—30 mg/L), initial pH (8—11), and contact time (0—100 min). The regression model exhibited a remarkable predictive capability, accounting for over 99% of the targeted response variation within the specified ranges of the factors (R<sup>2</sup> = 99.98%) with a 95% confidence level. The analysis of variance confirmed the significance and accuracy of the mathematical model, with F-values (1539.08 > > 1) and p-values (< 0.05) indicating the statistical significance of almost all factors within the studied ranges. These findings were supported by factorial, surfaces, and contours plots. Furthermore, the pseudo-second-order kinetic and Langmuir models demonstrated excellent fitting to the experimental data, with determination coefficients of 0.976 and 0.965, respectively. At optimal conditions (30 mg/L, pH 11, t > 50 min, and adsorbent dose of 0.5 g/L), approximately 96.33% of the dye was successfully removed. Os-Sm emerges as a promising and efficient alternative for Basic Blue 9 removal in aqueous solutions.</p></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"236 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical Modeling Using Full Factorial Design Applied in the Adsorption of Dye Basic Blue 9 from Synthetic Aqueous Solutions onto Oryza Sativa Husk-Derived Nano-Silica-Smectic Clay Composite\",\"authors\":\"Jean Marie Kepdieu, Gustave Tchanang, Jacques Romain Njimou, Cyprien Joel Ekani, Chantale Njiomou Djangang, Sanda Andrada Maicaneanu, Diego Rosso\",\"doi\":\"10.1007/s11270-024-07676-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study focuses on utilizing Oryza sativa husk (rice husk) to produce a nanosilica-doped smectitic clay (Os-Sm) for the adsorption of Basic Blue 9 from aqueous solutions. Response surface methodology was employed to investigate the impact of dye concentration (10—30 mg/L), initial pH (8—11), and contact time (0—100 min). The regression model exhibited a remarkable predictive capability, accounting for over 99% of the targeted response variation within the specified ranges of the factors (R<sup>2</sup> = 99.98%) with a 95% confidence level. The analysis of variance confirmed the significance and accuracy of the mathematical model, with F-values (1539.08 > > 1) and p-values (< 0.05) indicating the statistical significance of almost all factors within the studied ranges. These findings were supported by factorial, surfaces, and contours plots. Furthermore, the pseudo-second-order kinetic and Langmuir models demonstrated excellent fitting to the experimental data, with determination coefficients of 0.976 and 0.965, respectively. At optimal conditions (30 mg/L, pH 11, t > 50 min, and adsorbent dose of 0.5 g/L), approximately 96.33% of the dye was successfully removed. Os-Sm emerges as a promising and efficient alternative for Basic Blue 9 removal in aqueous solutions.</p></div>\",\"PeriodicalId\":808,\"journal\":{\"name\":\"Water, Air, & Soil Pollution\",\"volume\":\"236 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water, Air, & Soil Pollution\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11270-024-07676-3\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-024-07676-3","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Mathematical Modeling Using Full Factorial Design Applied in the Adsorption of Dye Basic Blue 9 from Synthetic Aqueous Solutions onto Oryza Sativa Husk-Derived Nano-Silica-Smectic Clay Composite
This study focuses on utilizing Oryza sativa husk (rice husk) to produce a nanosilica-doped smectitic clay (Os-Sm) for the adsorption of Basic Blue 9 from aqueous solutions. Response surface methodology was employed to investigate the impact of dye concentration (10—30 mg/L), initial pH (8—11), and contact time (0—100 min). The regression model exhibited a remarkable predictive capability, accounting for over 99% of the targeted response variation within the specified ranges of the factors (R2 = 99.98%) with a 95% confidence level. The analysis of variance confirmed the significance and accuracy of the mathematical model, with F-values (1539.08 > > 1) and p-values (< 0.05) indicating the statistical significance of almost all factors within the studied ranges. These findings were supported by factorial, surfaces, and contours plots. Furthermore, the pseudo-second-order kinetic and Langmuir models demonstrated excellent fitting to the experimental data, with determination coefficients of 0.976 and 0.965, respectively. At optimal conditions (30 mg/L, pH 11, t > 50 min, and adsorbent dose of 0.5 g/L), approximately 96.33% of the dye was successfully removed. Os-Sm emerges as a promising and efficient alternative for Basic Blue 9 removal in aqueous solutions.
期刊介绍:
Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments.
Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation.
Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.