基于多源数据分析的不稳定岩带变形行为研究

IF 3.7 2区 工程技术 Q3 ENGINEERING, ENVIRONMENTAL Bulletin of Engineering Geology and the Environment Pub Date : 2024-12-10 DOI:10.1007/s10064-024-03991-5
Yufang Zhang, Junyi He, Kun Yuan, Xueyong Xu, Ye Zhou, Haoshan Zhang, Aiguo Xing, Jian Cui
{"title":"基于多源数据分析的不稳定岩带变形行为研究","authors":"Yufang Zhang,&nbsp;Junyi He,&nbsp;Kun Yuan,&nbsp;Xueyong Xu,&nbsp;Ye Zhou,&nbsp;Haoshan Zhang,&nbsp;Aiguo Xing,&nbsp;Jian Cui","doi":"10.1007/s10064-024-03991-5","DOIUrl":null,"url":null,"abstract":"<div><p>Slope failure triggered by collaboration of coal-mining activities, structural plane, karstification and rainfall is very frequently occurred in Guizhou, China. Subsequent four rock topples occurred in Daxian village, Bijie City since October 2022 continuously threatening the safety of the residents and exhibited a high possibility of reoccurring geohazards in the Yiziyan unstable rock belt. Temporal and spatial multi-source data from GNSS, sensors, video footage, aerial image and remote sensing are integrated to reveal the unstable rock belt deformation behavior. Detailed macro- and microscopic data reveal that slope experienced a three-stage deformation process with different displacement rate since devices started to monitor. Based on the comprehensive monitoring data, inverse-velocity method (IVM) was improved with two quantitative indexes: displaced angle and crack width, and it indicated a slope failure event approximately on 23rd June 2023. According to the prediction result, government emergently evacuated all the residents and took effective disaster management. Therefore, fatalities were avoided in the major rock topple event occurred on 20th June 2023 in Yiziyan which served as a highly valuable case of successfully forecast approaching slope failure. The modified IVM provides specific precursor of future potential geohazards in the similar geological condition in Guizhou.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"84 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on deformation behavior of unstable rock belt based on multi-source data analysis\",\"authors\":\"Yufang Zhang,&nbsp;Junyi He,&nbsp;Kun Yuan,&nbsp;Xueyong Xu,&nbsp;Ye Zhou,&nbsp;Haoshan Zhang,&nbsp;Aiguo Xing,&nbsp;Jian Cui\",\"doi\":\"10.1007/s10064-024-03991-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Slope failure triggered by collaboration of coal-mining activities, structural plane, karstification and rainfall is very frequently occurred in Guizhou, China. Subsequent four rock topples occurred in Daxian village, Bijie City since October 2022 continuously threatening the safety of the residents and exhibited a high possibility of reoccurring geohazards in the Yiziyan unstable rock belt. Temporal and spatial multi-source data from GNSS, sensors, video footage, aerial image and remote sensing are integrated to reveal the unstable rock belt deformation behavior. Detailed macro- and microscopic data reveal that slope experienced a three-stage deformation process with different displacement rate since devices started to monitor. Based on the comprehensive monitoring data, inverse-velocity method (IVM) was improved with two quantitative indexes: displaced angle and crack width, and it indicated a slope failure event approximately on 23rd June 2023. According to the prediction result, government emergently evacuated all the residents and took effective disaster management. Therefore, fatalities were avoided in the major rock topple event occurred on 20th June 2023 in Yiziyan which served as a highly valuable case of successfully forecast approaching slope failure. The modified IVM provides specific precursor of future potential geohazards in the similar geological condition in Guizhou.</p></div>\",\"PeriodicalId\":500,\"journal\":{\"name\":\"Bulletin of Engineering Geology and the Environment\",\"volume\":\"84 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Engineering Geology and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10064-024-03991-5\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-024-03991-5","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

煤矿开采活动、构造面、岩溶作用和降雨共同作用导致的边坡破坏在贵州地区十分常见。2022年10月以来,毕节市大仙村连续发生4次岩石垮塌,持续威胁着居民的生命安全,易子岩不稳定带地质灾害再次发生的可能性较大。结合GNSS、传感器、视频、航拍、遥感等多源数据,揭示不稳定岩带的时空变形特征。详细的宏观和微观数据表明,自装置开始监测以来,边坡经历了不同位移速率的三个阶段变形过程。在综合监测数据的基础上,利用位移角和裂缝宽度两个定量指标对逆速度法进行了改进,预测边坡破坏事件发生时间约为2023年6月23日。根据预测结果,政府紧急疏散了所有居民,并采取了有效的灾害管理措施。因此,在2023年6月20日发生的宜子岩特大塌方事件中避免了人员伤亡,为成功预测边坡接近破坏提供了极具价值的案例。修正后的IVM为贵州类似地质条件下的未来潜在地质灾害提供了具体的前兆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation on deformation behavior of unstable rock belt based on multi-source data analysis

Slope failure triggered by collaboration of coal-mining activities, structural plane, karstification and rainfall is very frequently occurred in Guizhou, China. Subsequent four rock topples occurred in Daxian village, Bijie City since October 2022 continuously threatening the safety of the residents and exhibited a high possibility of reoccurring geohazards in the Yiziyan unstable rock belt. Temporal and spatial multi-source data from GNSS, sensors, video footage, aerial image and remote sensing are integrated to reveal the unstable rock belt deformation behavior. Detailed macro- and microscopic data reveal that slope experienced a three-stage deformation process with different displacement rate since devices started to monitor. Based on the comprehensive monitoring data, inverse-velocity method (IVM) was improved with two quantitative indexes: displaced angle and crack width, and it indicated a slope failure event approximately on 23rd June 2023. According to the prediction result, government emergently evacuated all the residents and took effective disaster management. Therefore, fatalities were avoided in the major rock topple event occurred on 20th June 2023 in Yiziyan which served as a highly valuable case of successfully forecast approaching slope failure. The modified IVM provides specific precursor of future potential geohazards in the similar geological condition in Guizhou.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of Engineering Geology and the Environment
Bulletin of Engineering Geology and the Environment 工程技术-地球科学综合
CiteScore
7.10
自引率
11.90%
发文量
445
审稿时长
4.1 months
期刊介绍: Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces: • the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations; • the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change; • the assessment of the mechanical and hydrological behaviour of soil and rock masses; • the prediction of changes to the above properties with time; • the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.
期刊最新文献
Influence of topography on the fragmentation and mobility of landslides Experimental investigation of the mechanical behaviour of sand-rubber-gravel mixtures Study on macroscopic and microscopic damage and evolution of coal rock based on acoustic emission time-varying characteristics Failure mechanism and mechanical analysis in horizontal bedded surrounding rock with high in-situ stress An experimental study on the characterization and durability of two building low-porous trachyte and gabbro
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1