N, P共掺杂石墨毡阴极在抗坏血酸耦合电fenton工艺中高效去除环丙沙星:同时增强H2O2生成和Fe3+/Fe2+循环。

IF 7.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Environmental Research Pub Date : 2025-02-01 DOI:10.1016/j.envres.2024.120577
Xianpeng Li , Jingjie Yang , Xuelin Shi , Zhirong Sun
{"title":"N, P共掺杂石墨毡阴极在抗坏血酸耦合电fenton工艺中高效去除环丙沙星:同时增强H2O2生成和Fe3+/Fe2+循环。","authors":"Xianpeng Li ,&nbsp;Jingjie Yang ,&nbsp;Xuelin Shi ,&nbsp;Zhirong Sun","doi":"10.1016/j.envres.2024.120577","DOIUrl":null,"url":null,"abstract":"<div><div>To enhance the contaminant removal efficiency of the electro-Fenton (E-Fenton) process, a nitrogen and phosphorus co-doped graphite felt (NPGF) cathode was synthesized using an anodic oxidation technique. An ascorbic acid-coupled NPGF E-Fenton system was then established for the degradation of ciprofloxacin (CIP). The NPGF cathode featured abundant oxygen-containing functional groups (such as -COOH and -OH), which enhanced the selectivity of oxygen reduction and facilitated the formation of H<sub>2</sub>O<sub>2</sub>. The introduction of N and P doping disrupted the charge balance within the carbon framework, accelerating electron transfer. Together, the NPGF electrode and ascorbic acid enhanced the cycling of Fe<sup>3+</sup>/Fe<sup>2+</sup> while preventing the formation of iron sludge. Under optimal conditions (ascorbic acid concentration of 0.3 mM, current density of 2.0 mA cm<sup>−2</sup>, pH of 3.0, aeration rate of 0.6 L min<sup>−1</sup>, and Fe<sup>2+</sup> concentration of 0.2 mM), CIP was completely removed within 20 min. The NPGF electrode exhibited excellent stability, maintaining 95.35% CIP removal even after 8 cycles. Analysis revealed that singlet oxygen primarily mediated the degradation of CIP, with its concentration measured at 1.23 × 10<sup>−7</sup> M. Density functional theory was used to analyze the characteristics and potential attack sites of CIP, enabling the proposal of plausible degradation pathways. Toxicity simulations and Escherichia coli growth inhibition experiments demonstrated a reduction in the toxicity of CIP and its intermediate products. This study offers a valuable reference for improving the efficiency of E-Fenton technology in antibiotic wastewater treatment.</div></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":"266 ","pages":"Article 120577"},"PeriodicalIF":7.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"N, P co-doped graphite felt cathode for efficient removal of ciprofloxacin in an ascorbic acid-coupled electro-Fenton process: Simultaneously enhancing H2O2 generation and Fe3+/Fe2+ cycling\",\"authors\":\"Xianpeng Li ,&nbsp;Jingjie Yang ,&nbsp;Xuelin Shi ,&nbsp;Zhirong Sun\",\"doi\":\"10.1016/j.envres.2024.120577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To enhance the contaminant removal efficiency of the electro-Fenton (E-Fenton) process, a nitrogen and phosphorus co-doped graphite felt (NPGF) cathode was synthesized using an anodic oxidation technique. An ascorbic acid-coupled NPGF E-Fenton system was then established for the degradation of ciprofloxacin (CIP). The NPGF cathode featured abundant oxygen-containing functional groups (such as -COOH and -OH), which enhanced the selectivity of oxygen reduction and facilitated the formation of H<sub>2</sub>O<sub>2</sub>. The introduction of N and P doping disrupted the charge balance within the carbon framework, accelerating electron transfer. Together, the NPGF electrode and ascorbic acid enhanced the cycling of Fe<sup>3+</sup>/Fe<sup>2+</sup> while preventing the formation of iron sludge. Under optimal conditions (ascorbic acid concentration of 0.3 mM, current density of 2.0 mA cm<sup>−2</sup>, pH of 3.0, aeration rate of 0.6 L min<sup>−1</sup>, and Fe<sup>2+</sup> concentration of 0.2 mM), CIP was completely removed within 20 min. The NPGF electrode exhibited excellent stability, maintaining 95.35% CIP removal even after 8 cycles. Analysis revealed that singlet oxygen primarily mediated the degradation of CIP, with its concentration measured at 1.23 × 10<sup>−7</sup> M. Density functional theory was used to analyze the characteristics and potential attack sites of CIP, enabling the proposal of plausible degradation pathways. Toxicity simulations and Escherichia coli growth inhibition experiments demonstrated a reduction in the toxicity of CIP and its intermediate products. This study offers a valuable reference for improving the efficiency of E-Fenton technology in antibiotic wastewater treatment.</div></div>\",\"PeriodicalId\":312,\"journal\":{\"name\":\"Environmental Research\",\"volume\":\"266 \",\"pages\":\"Article 120577\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013935124024812\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013935124024812","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

为了提高电fenton (E-Fenton)工艺对污染物的去除效率,采用阳极氧化技术合成了氮磷共掺杂石墨毡(NPGF)阴极。建立了抗坏血酸偶联NPGF E-Fenton体系降解环丙沙星(CIP)。NPGF阴极具有丰富的含氧官能团(如-COOH和-OH),增强了氧还原的选择性,有利于H2O2的形成。N和P掺杂的引入破坏了碳骨架内的电荷平衡,加速了电子转移。NPGF电极和抗坏血酸共同促进了Fe3+/Fe2+的循环,同时防止了铁污泥的形成。在抗坏血酸浓度为0.3 mM,电流密度为2.0 mA cm-2, pH为3.0,曝气速率为0.6 L min-1, Fe2+浓度为0.2 mM的最佳条件下,CIP在20 min内被完全去除。NPGF电极表现出优异的稳定性,即使在8次循环后仍保持95.35%的CIP去除率。分析表明,单重态氧主要介导了CIP的降解,其浓度为1.23 × 10-7 m,利用密度泛函理论分析了CIP的特征和潜在攻击部位,提出了合理的降解途径。毒性模拟和大肠杆菌生长抑制实验表明,CIP及其中间产物的毒性降低。本研究为提高E-Fenton技术在抗生素废水处理中的效率提供了有价值的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
N, P co-doped graphite felt cathode for efficient removal of ciprofloxacin in an ascorbic acid-coupled electro-Fenton process: Simultaneously enhancing H2O2 generation and Fe3+/Fe2+ cycling
To enhance the contaminant removal efficiency of the electro-Fenton (E-Fenton) process, a nitrogen and phosphorus co-doped graphite felt (NPGF) cathode was synthesized using an anodic oxidation technique. An ascorbic acid-coupled NPGF E-Fenton system was then established for the degradation of ciprofloxacin (CIP). The NPGF cathode featured abundant oxygen-containing functional groups (such as -COOH and -OH), which enhanced the selectivity of oxygen reduction and facilitated the formation of H2O2. The introduction of N and P doping disrupted the charge balance within the carbon framework, accelerating electron transfer. Together, the NPGF electrode and ascorbic acid enhanced the cycling of Fe3+/Fe2+ while preventing the formation of iron sludge. Under optimal conditions (ascorbic acid concentration of 0.3 mM, current density of 2.0 mA cm−2, pH of 3.0, aeration rate of 0.6 L min−1, and Fe2+ concentration of 0.2 mM), CIP was completely removed within 20 min. The NPGF electrode exhibited excellent stability, maintaining 95.35% CIP removal even after 8 cycles. Analysis revealed that singlet oxygen primarily mediated the degradation of CIP, with its concentration measured at 1.23 × 10−7 M. Density functional theory was used to analyze the characteristics and potential attack sites of CIP, enabling the proposal of plausible degradation pathways. Toxicity simulations and Escherichia coli growth inhibition experiments demonstrated a reduction in the toxicity of CIP and its intermediate products. This study offers a valuable reference for improving the efficiency of E-Fenton technology in antibiotic wastewater treatment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Research
Environmental Research 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
12.60
自引率
8.40%
发文量
2480
审稿时长
4.7 months
期刊介绍: The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.
期刊最新文献
Expression of Concern: "Anti-diabetic efficacy and selective inhibition of methyl glyoxal, intervention with biogenic Zinc oxide nanoparticle" [Environ. Res., 216 (2023) 114475]. Expression of Concern: "Aristolochia bracteolata flower extract based phytosynthesis and characterization of AgNPs: Antimicrobial, antidiabetic, and antioxidant activities potential assessment" [Environ. Res., 251 (2024) 118729]. Expression of Concern: "Assessment of hepatotoxicity and nephrotoxicity in Cirrhinus mrigala induced by trypan blue - An azo dye" [Environ. Res., 215 (2022) 114120]. Expression of Concern: "Bio-functionalized copper oxide/chitosan nanocomposite using Sida cordifolia and their efficient properties of antibacterial, anticancer activity against on breast and lung cancer cell lines" [Environ. Res., 218 (2023) 114986]. Expression of Concern: "Catalytic pyrolysis of fish waste oil using ZSM-5 catalyst for the production of renewable biofuel" [Environ. Res., 258 (2024) 119486].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1