Yiran Huang, Nan Gao, Boren Liu, Weili Luo, Jianfei Chen, Yan Chen, Yong Bi, Zikai Zhou
{"title":"脑内Ly6Chi单核细胞是维持成年海马神经发生所必需的。","authors":"Yiran Huang, Nan Gao, Boren Liu, Weili Luo, Jianfei Chen, Yan Chen, Yong Bi, Zikai Zhou","doi":"10.14336/AD.2024.0835","DOIUrl":null,"url":null,"abstract":"<p><p>Adult hippocampal neurogenesis (AHN) is crucial to various brain functions. Neurodegeneration, neuroinflammation and stress can impair AHN, contributing to the development of neurological and psychiatric disorders. Stress is known to extensively affect both the brain and peripheral immune system. However, the cellular and molecular mechanisms underlying stress-induced impairments in AHN remain unclear. In this study, we found that, unlike neuroinflammatory conditions, stress significantly inhibited AHN independently of microglial activation, suggesting a novel mechanism mediating stress-impaired AHN. Since stress modulates peripheral immune cells, we examined the distribution of immune cells infiltrating the brain. We found a significant decrease of infiltrated Ly6C<sup>hi</sup> monocytes in the brain parenchyma. In the blood, adoptively transferred ZsGreen<sup>+</sup> Ly6C<sup>hi</sup> monocytes drastically reduced due to stress-induced homing to the bone marrow. Adrenalectomy (ADX) experiments revealed that monocyte homing is regulated by glucocorticoid and may cause impairments in AHN. Depleting peripheral circulating monocytes reduced brain-resident Ly6C<sup>hi</sup> monocytes and replicated the stress-induced inhibition of AHN, independent of microglia activation. RNA sequencing analysis of Ly6C<sup>hi</sup> monocytes revealed a stress-induced transcriptional profile, suggesting their supportive role in neuronal functions. Together, these findings demonstrate a novel and essential role of brain resident Ly6C<sup>hi</sup> monocytes in maintaining AHN at basal level, which is important for brain functions.</p>","PeriodicalId":7434,"journal":{"name":"Aging and Disease","volume":" ","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brain Resident Ly6C<sup>hi</sup> Monocytes Are Necessary for Maintaining Adult Hippocampal Neurogenesis.\",\"authors\":\"Yiran Huang, Nan Gao, Boren Liu, Weili Luo, Jianfei Chen, Yan Chen, Yong Bi, Zikai Zhou\",\"doi\":\"10.14336/AD.2024.0835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Adult hippocampal neurogenesis (AHN) is crucial to various brain functions. Neurodegeneration, neuroinflammation and stress can impair AHN, contributing to the development of neurological and psychiatric disorders. Stress is known to extensively affect both the brain and peripheral immune system. However, the cellular and molecular mechanisms underlying stress-induced impairments in AHN remain unclear. In this study, we found that, unlike neuroinflammatory conditions, stress significantly inhibited AHN independently of microglial activation, suggesting a novel mechanism mediating stress-impaired AHN. Since stress modulates peripheral immune cells, we examined the distribution of immune cells infiltrating the brain. We found a significant decrease of infiltrated Ly6C<sup>hi</sup> monocytes in the brain parenchyma. In the blood, adoptively transferred ZsGreen<sup>+</sup> Ly6C<sup>hi</sup> monocytes drastically reduced due to stress-induced homing to the bone marrow. Adrenalectomy (ADX) experiments revealed that monocyte homing is regulated by glucocorticoid and may cause impairments in AHN. Depleting peripheral circulating monocytes reduced brain-resident Ly6C<sup>hi</sup> monocytes and replicated the stress-induced inhibition of AHN, independent of microglia activation. RNA sequencing analysis of Ly6C<sup>hi</sup> monocytes revealed a stress-induced transcriptional profile, suggesting their supportive role in neuronal functions. Together, these findings demonstrate a novel and essential role of brain resident Ly6C<sup>hi</sup> monocytes in maintaining AHN at basal level, which is important for brain functions.</p>\",\"PeriodicalId\":7434,\"journal\":{\"name\":\"Aging and Disease\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging and Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.14336/AD.2024.0835\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging and Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.14336/AD.2024.0835","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
Brain Resident Ly6Chi Monocytes Are Necessary for Maintaining Adult Hippocampal Neurogenesis.
Adult hippocampal neurogenesis (AHN) is crucial to various brain functions. Neurodegeneration, neuroinflammation and stress can impair AHN, contributing to the development of neurological and psychiatric disorders. Stress is known to extensively affect both the brain and peripheral immune system. However, the cellular and molecular mechanisms underlying stress-induced impairments in AHN remain unclear. In this study, we found that, unlike neuroinflammatory conditions, stress significantly inhibited AHN independently of microglial activation, suggesting a novel mechanism mediating stress-impaired AHN. Since stress modulates peripheral immune cells, we examined the distribution of immune cells infiltrating the brain. We found a significant decrease of infiltrated Ly6Chi monocytes in the brain parenchyma. In the blood, adoptively transferred ZsGreen+ Ly6Chi monocytes drastically reduced due to stress-induced homing to the bone marrow. Adrenalectomy (ADX) experiments revealed that monocyte homing is regulated by glucocorticoid and may cause impairments in AHN. Depleting peripheral circulating monocytes reduced brain-resident Ly6Chi monocytes and replicated the stress-induced inhibition of AHN, independent of microglia activation. RNA sequencing analysis of Ly6Chi monocytes revealed a stress-induced transcriptional profile, suggesting their supportive role in neuronal functions. Together, these findings demonstrate a novel and essential role of brain resident Ly6Chi monocytes in maintaining AHN at basal level, which is important for brain functions.
期刊介绍:
Aging & Disease (A&D) is an open-access online journal dedicated to publishing groundbreaking research on the biology of aging, the pathophysiology of age-related diseases, and innovative therapies for conditions affecting the elderly. The scope encompasses various diseases such as Stroke, Alzheimer's disease, Parkinson’s disease, Epilepsy, Dementia, Depression, Cardiovascular Disease, Cancer, Arthritis, Cataract, Osteoporosis, Diabetes, and Hypertension. The journal welcomes studies involving animal models as well as human tissues or cells.