用于同时检测与牛繁殖衰竭相关的病原体的靶向综合征下一代测序面板。

IF 6.1 2区 医学 Q1 MICROBIOLOGY Journal of Clinical Microbiology Pub Date : 2025-01-31 Epub Date: 2024-12-10 DOI:10.1128/jcm.01433-24
Dhinesh Periyasamy, Yanyun Huang, Janet E Hill
{"title":"用于同时检测与牛繁殖衰竭相关的病原体的靶向综合征下一代测序面板。","authors":"Dhinesh Periyasamy, Yanyun Huang, Janet E Hill","doi":"10.1128/jcm.01433-24","DOIUrl":null,"url":null,"abstract":"<p><p>Bovine reproductive failure, which includes infertility, abortion, and stillbirth in cattle, leads to significant economic losses for beef and milk producers. Diagnosing the infectious causes of bovine reproductive failure is challenging as there are multiple pathogens associated with it. The traditional stepwise approach to diagnostic testing is time-consuming and can cause significant delays. In this study, we have developed a syndromic next-generation sequencing panel (BovReproSeq) for the simultaneous detection of 17 pathogens (bacteria, virus, and protozoa) associated with bovine reproductive failure. This targeted approach involves amplifying multiple pathogen-specific targets using ultra-multiplex PCR, followed by sequencing with the Oxford Nanopore platform and subsequent analysis of the data using a custom bioinformatic pipeline to determine the presence or absence of pathogens. We tested 116 clinical samples and found that BovReproSeq results matched with current diagnostic methods for 93% of the samples, and most of the disagreements occurring in samples with very low pathogen loads (Ct >35). At the optimal read-count threshold of 10 reads (minimum number of reads to classify the sample as positive), the clinical sensitivity of the assay was approximately 82%, while clinical specificity was 100%. The overall accuracy of the assay was 98.8%. Matthews correlation coefficient (correlation coefficient of binary classification) was approximately 0.90 and F1 score (harmonic mean of precision and recall) was 0.90, indicating excellent overall performance. Our study presents a significant advancement in detecting the infectious agents associated with bovine reproductive failure and the BovReproSeq panel's ability to detect 17 pathogens makes it a promising tool for veterinary diagnostics.IMPORTANCEBovine reproductive failure causes substantial economic losses to beef and milk producers, and infectious disease contributes significantly to this syndrome. Etiologic diagnosis is complicated since multiple pathogens can be involved and infections with some pathogens are asymptomatic or cause similar clinical signs. A stepwise approach to diagnostic testing is time-consuming and increases the risk of missing the correct diagnosis. BovReproSeq is a next-generation sequencing-based diagnostic panel that allows detection of 17 reproductive failure pathogens simultaneously.</p>","PeriodicalId":15511,"journal":{"name":"Journal of Clinical Microbiology","volume":" ","pages":"e0143324"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784112/pdf/","citationCount":"0","resultStr":"{\"title\":\"Targeted syndromic next-generation sequencing panel for simultaneous detection of pathogens associated with bovine reproductive failure.\",\"authors\":\"Dhinesh Periyasamy, Yanyun Huang, Janet E Hill\",\"doi\":\"10.1128/jcm.01433-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bovine reproductive failure, which includes infertility, abortion, and stillbirth in cattle, leads to significant economic losses for beef and milk producers. Diagnosing the infectious causes of bovine reproductive failure is challenging as there are multiple pathogens associated with it. The traditional stepwise approach to diagnostic testing is time-consuming and can cause significant delays. In this study, we have developed a syndromic next-generation sequencing panel (BovReproSeq) for the simultaneous detection of 17 pathogens (bacteria, virus, and protozoa) associated with bovine reproductive failure. This targeted approach involves amplifying multiple pathogen-specific targets using ultra-multiplex PCR, followed by sequencing with the Oxford Nanopore platform and subsequent analysis of the data using a custom bioinformatic pipeline to determine the presence or absence of pathogens. We tested 116 clinical samples and found that BovReproSeq results matched with current diagnostic methods for 93% of the samples, and most of the disagreements occurring in samples with very low pathogen loads (Ct >35). At the optimal read-count threshold of 10 reads (minimum number of reads to classify the sample as positive), the clinical sensitivity of the assay was approximately 82%, while clinical specificity was 100%. The overall accuracy of the assay was 98.8%. Matthews correlation coefficient (correlation coefficient of binary classification) was approximately 0.90 and F1 score (harmonic mean of precision and recall) was 0.90, indicating excellent overall performance. Our study presents a significant advancement in detecting the infectious agents associated with bovine reproductive failure and the BovReproSeq panel's ability to detect 17 pathogens makes it a promising tool for veterinary diagnostics.IMPORTANCEBovine reproductive failure causes substantial economic losses to beef and milk producers, and infectious disease contributes significantly to this syndrome. Etiologic diagnosis is complicated since multiple pathogens can be involved and infections with some pathogens are asymptomatic or cause similar clinical signs. A stepwise approach to diagnostic testing is time-consuming and increases the risk of missing the correct diagnosis. BovReproSeq is a next-generation sequencing-based diagnostic panel that allows detection of 17 reproductive failure pathogens simultaneously.</p>\",\"PeriodicalId\":15511,\"journal\":{\"name\":\"Journal of Clinical Microbiology\",\"volume\":\" \",\"pages\":\"e0143324\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784112/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Microbiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1128/jcm.01433-24\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/jcm.01433-24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

牛的生殖功能衰竭,包括牛的不孕、流产和死胎,给牛肉和牛奶生产商带来了重大的经济损失。诊断牛生殖衰竭的感染原因具有挑战性,因为有多种病原体与之相关。传统的逐步诊断测试方法非常耗时,并可能导致严重的延误。在这项研究中,我们开发了一个综合征下一代测序小组(bovreseq),用于同时检测与牛繁殖失败相关的17种病原体(细菌,病毒和原生动物)。这种靶向方法包括使用超多重PCR扩增多个病原体特异性靶点,然后使用牛津纳米孔平台进行测序,然后使用定制的生物信息学管道对数据进行分析,以确定病原体的存在或不存在。我们测试了116个临床样本,发现bovreseq结果与93%的样本的当前诊断方法相匹配,并且大多数不一致发生在病原体载量非常低的样本中(Ct bbb35)。在最佳读取计数阈值为10个读取(将样本分类为阳性的最小读取数)时,该检测的临床敏感性约为82%,而临床特异性为100%。该方法的总体准确度为98.8%。马修斯相关系数(二分类相关系数)约为0.90,F1分数(查准率和查全率的调和平均值)为0.90,整体表现优异。我们的研究在检测与牛繁殖失败相关的感染因子方面取得了重大进展,bovreseq小组检测17种病原体的能力使其成为兽医诊断的一个有前途的工具。牛的繁殖失败给牛肉和牛奶生产者造成了巨大的经济损失,传染病是造成这一综合症的重要原因。病因诊断是复杂的,因为可能涉及多种病原体,一些病原体感染是无症状的或引起类似的临床症状。逐步进行诊断测试既耗时又增加了错过正确诊断的风险。bovreseq是下一代基于测序的诊断面板,可同时检测17种生殖失败病原体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Targeted syndromic next-generation sequencing panel for simultaneous detection of pathogens associated with bovine reproductive failure.

Bovine reproductive failure, which includes infertility, abortion, and stillbirth in cattle, leads to significant economic losses for beef and milk producers. Diagnosing the infectious causes of bovine reproductive failure is challenging as there are multiple pathogens associated with it. The traditional stepwise approach to diagnostic testing is time-consuming and can cause significant delays. In this study, we have developed a syndromic next-generation sequencing panel (BovReproSeq) for the simultaneous detection of 17 pathogens (bacteria, virus, and protozoa) associated with bovine reproductive failure. This targeted approach involves amplifying multiple pathogen-specific targets using ultra-multiplex PCR, followed by sequencing with the Oxford Nanopore platform and subsequent analysis of the data using a custom bioinformatic pipeline to determine the presence or absence of pathogens. We tested 116 clinical samples and found that BovReproSeq results matched with current diagnostic methods for 93% of the samples, and most of the disagreements occurring in samples with very low pathogen loads (Ct >35). At the optimal read-count threshold of 10 reads (minimum number of reads to classify the sample as positive), the clinical sensitivity of the assay was approximately 82%, while clinical specificity was 100%. The overall accuracy of the assay was 98.8%. Matthews correlation coefficient (correlation coefficient of binary classification) was approximately 0.90 and F1 score (harmonic mean of precision and recall) was 0.90, indicating excellent overall performance. Our study presents a significant advancement in detecting the infectious agents associated with bovine reproductive failure and the BovReproSeq panel's ability to detect 17 pathogens makes it a promising tool for veterinary diagnostics.IMPORTANCEBovine reproductive failure causes substantial economic losses to beef and milk producers, and infectious disease contributes significantly to this syndrome. Etiologic diagnosis is complicated since multiple pathogens can be involved and infections with some pathogens are asymptomatic or cause similar clinical signs. A stepwise approach to diagnostic testing is time-consuming and increases the risk of missing the correct diagnosis. BovReproSeq is a next-generation sequencing-based diagnostic panel that allows detection of 17 reproductive failure pathogens simultaneously.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Clinical Microbiology
Journal of Clinical Microbiology 医学-微生物学
CiteScore
17.10
自引率
4.30%
发文量
347
审稿时长
3 months
期刊介绍: The Journal of Clinical Microbiology® disseminates the latest research concerning the laboratory diagnosis of human and animal infections, along with the laboratory's role in epidemiology and the management of infectious diseases.
期刊最新文献
Nanopore sequencing for precise detection of Mycobacterium tuberculosis and drug resistance: a retrospective multicenter study in China. External quality assessment of molecular detection and variant typing of SARS-CoV-2 in European expert laboratories in 2023. Lipid fingerprinting by MALDI Biotyper Sirius instrument fails to differentiate the three subspecies of the Mycobacterium abscessus complex. The impact of FDA-cleared molecular solutions for BK polyomavirus quantitation. A rapid and simple MALDI-TOF MS lipid profiling method for differentiating Mycobacterium ulcerans from Mycobacterium marinum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1