慢性地高辛暴露导致斑马鱼多动、焦虑溶解和改变脑单胺含量(Danio rerio)。

IF 1.6 4区 医学 Q4 NEUROSCIENCES Neuroreport Pub Date : 2025-01-08 Epub Date: 2024-12-04 DOI:10.1097/WNR.0000000000002120
Rogneda B Kazanskaya, Nikita P Ilyin, Denis A Abaimov, Ksenia A Derzhavina, Konstantin A Demin, Allan V Kalueff, Raul R Gainetdinov, Alexander V Lopachev
{"title":"慢性地高辛暴露导致斑马鱼多动、焦虑溶解和改变脑单胺含量(Danio rerio)。","authors":"Rogneda B Kazanskaya, Nikita P Ilyin, Denis A Abaimov, Ksenia A Derzhavina, Konstantin A Demin, Allan V Kalueff, Raul R Gainetdinov, Alexander V Lopachev","doi":"10.1097/WNR.0000000000002120","DOIUrl":null,"url":null,"abstract":"<p><p>To investigate the effects of chronic exposure to the cardiotonic steroid digoxin on locomotor activity, anxiety, and brain tissue monoamine content in Zebrafish. In total 24 adult (3-5 months) wild-type experimentally naïve zebrafish (50 : 50 ratio of females to males) were housed in 4-L tanks, in groups of six animals per tank. Two μM Digoxin was maintained in half of the tanks for 7 days. The 'Novel tank test' was performed on day 7 and the animals were euthanized. Concentrations of dopamine, serotonin, and their metabolites were then quantified in brain tissue using HPLC-ED. Seven-day exposure to 2 μM water solution of digoxin caused robust hyperlocomotion and reduced anxiety-like behavior in adult zebrafish in the 'Novel tank test'. The treatment also evoked pronounced neurochemical responses in zebrafish, including increased whole-brain 3-methoxytyramine, reduced norepinephrine and serotonin, and unaltered dopamine, homovanillic acid or 5-hydroxyindoleacetic acid levels. Deficits in monoaminergic (dopaminergic, serotonergic, and noradrenergic) neurotransmission are a key pathogenetic factor for multiple neuropsychiatric and neurodegenerative diseases. Commonly used clinically to treat cardiac conditions, cardiotonic steroids can affect dopaminergic neurotransmission. Chronic exposure to digoxin evokes hyperactivity-like behavior accompanied by altered monoamine neurotransmission in zebrafish, which may be relevant to understanding the central nervous system side effects of cardiotonic steroids.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":"36 1","pages":"55-60"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chronic digoxin exposure causes hyperactivity, anxiolysis, and alters brain monoamine content in zebrafish (Danio rerio).\",\"authors\":\"Rogneda B Kazanskaya, Nikita P Ilyin, Denis A Abaimov, Ksenia A Derzhavina, Konstantin A Demin, Allan V Kalueff, Raul R Gainetdinov, Alexander V Lopachev\",\"doi\":\"10.1097/WNR.0000000000002120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To investigate the effects of chronic exposure to the cardiotonic steroid digoxin on locomotor activity, anxiety, and brain tissue monoamine content in Zebrafish. In total 24 adult (3-5 months) wild-type experimentally naïve zebrafish (50 : 50 ratio of females to males) were housed in 4-L tanks, in groups of six animals per tank. Two μM Digoxin was maintained in half of the tanks for 7 days. The 'Novel tank test' was performed on day 7 and the animals were euthanized. Concentrations of dopamine, serotonin, and their metabolites were then quantified in brain tissue using HPLC-ED. Seven-day exposure to 2 μM water solution of digoxin caused robust hyperlocomotion and reduced anxiety-like behavior in adult zebrafish in the 'Novel tank test'. The treatment also evoked pronounced neurochemical responses in zebrafish, including increased whole-brain 3-methoxytyramine, reduced norepinephrine and serotonin, and unaltered dopamine, homovanillic acid or 5-hydroxyindoleacetic acid levels. Deficits in monoaminergic (dopaminergic, serotonergic, and noradrenergic) neurotransmission are a key pathogenetic factor for multiple neuropsychiatric and neurodegenerative diseases. Commonly used clinically to treat cardiac conditions, cardiotonic steroids can affect dopaminergic neurotransmission. Chronic exposure to digoxin evokes hyperactivity-like behavior accompanied by altered monoamine neurotransmission in zebrafish, which may be relevant to understanding the central nervous system side effects of cardiotonic steroids.</p>\",\"PeriodicalId\":19213,\"journal\":{\"name\":\"Neuroreport\",\"volume\":\"36 1\",\"pages\":\"55-60\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroreport\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/WNR.0000000000002120\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroreport","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/WNR.0000000000002120","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/4 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

探讨慢性暴露于强心剂地高辛对斑马鱼运动活动、焦虑和脑组织单胺含量的影响。实验中,24条成年(3-5个月)野生型naïve斑马鱼(雌雄比例为50:50)被饲养在4-L的缸中,每缸6只。2 μM地高辛在一半的储罐中维持7天。在第7天进行“新型水箱试验”,并对动物实施安乐死。然后使用HPLC-ED定量脑组织中多巴胺、血清素及其代谢物的浓度。在“新颖水箱试验”中,暴露于2 μM地高辛水溶液7天可导致成年斑马鱼剧烈过度运动和减少焦虑样行为。治疗还在斑马鱼中引起了明显的神经化学反应,包括全脑3-甲氧基酪胺增加,去甲肾上腺素和血清素减少,多巴胺、高香草酸或5-羟基吲哚乙酸水平不变。单胺能(多巴胺能、血清素能和去甲肾上腺素能)神经传递缺陷是多种神经精神和神经退行性疾病的关键致病因素。常用于临床治疗心脏疾病,心脏强直性类固醇可影响多巴胺能神经传递。长期暴露于地高辛会引起斑马鱼的多动样行为,并伴有单胺神经传递的改变,这可能与理解强心剂类固醇对中枢神经系统的副作用有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chronic digoxin exposure causes hyperactivity, anxiolysis, and alters brain monoamine content in zebrafish (Danio rerio).

To investigate the effects of chronic exposure to the cardiotonic steroid digoxin on locomotor activity, anxiety, and brain tissue monoamine content in Zebrafish. In total 24 adult (3-5 months) wild-type experimentally naïve zebrafish (50 : 50 ratio of females to males) were housed in 4-L tanks, in groups of six animals per tank. Two μM Digoxin was maintained in half of the tanks for 7 days. The 'Novel tank test' was performed on day 7 and the animals were euthanized. Concentrations of dopamine, serotonin, and their metabolites were then quantified in brain tissue using HPLC-ED. Seven-day exposure to 2 μM water solution of digoxin caused robust hyperlocomotion and reduced anxiety-like behavior in adult zebrafish in the 'Novel tank test'. The treatment also evoked pronounced neurochemical responses in zebrafish, including increased whole-brain 3-methoxytyramine, reduced norepinephrine and serotonin, and unaltered dopamine, homovanillic acid or 5-hydroxyindoleacetic acid levels. Deficits in monoaminergic (dopaminergic, serotonergic, and noradrenergic) neurotransmission are a key pathogenetic factor for multiple neuropsychiatric and neurodegenerative diseases. Commonly used clinically to treat cardiac conditions, cardiotonic steroids can affect dopaminergic neurotransmission. Chronic exposure to digoxin evokes hyperactivity-like behavior accompanied by altered monoamine neurotransmission in zebrafish, which may be relevant to understanding the central nervous system side effects of cardiotonic steroids.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuroreport
Neuroreport 医学-神经科学
CiteScore
3.20
自引率
0.00%
发文量
150
审稿时长
1 months
期刊介绍: NeuroReport is a channel for rapid communication of new findings in neuroscience. It is a forum for the publication of short but complete reports of important studies that require very fast publication. Papers are accepted on the basis of the novelty of their finding, on their significance for neuroscience and on a clear need for rapid publication. Preliminary communications are not suitable for the Journal. Submitted articles undergo a preliminary review by the editor. Some articles may be returned to authors without further consideration. Those being considered for publication will undergo further assessment and peer-review by the editors and those invited to do so from a reviewer pool. The core interest of the Journal is on studies that cast light on how the brain (and the whole of the nervous system) works. We aim to give authors a decision on their submission within 2-5 weeks, and all accepted articles appear in the next issue to press.
期刊最新文献
Diabetes may contribute to cognitive impairment in Parkinson's disease via damaging white matter tracts. Plateau hypoxia-induced upregulation of reticulon 4 pathway mediates altered autophagic flux involved in blood-brain barrier disruption after traumatic brain injury. Preventive effect of aminocaproic acid combined with nimodipine on short-term rebleeding in patients with aneurysmal subarachnoid hemorrhage. The potential of mitochondrially-targeted tetrapeptide in protecting against noise-induced hearing impairment. TRIM37 exacerbates cerebral ischemic injury by regulating the PPARγ/NF-κB pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1