基于Bi-LSTM的司法舆情监督与智能决策模型设计。

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE PeerJ Computer Science Pub Date : 2024-11-13 eCollection Date: 2024-01-01 DOI:10.7717/peerj-cs.2385
Heng Guo
{"title":"基于Bi-LSTM的司法舆情监督与智能决策模型设计。","authors":"Heng Guo","doi":"10.7717/peerj-cs.2385","DOIUrl":null,"url":null,"abstract":"<p><p>Fuzzy preference modeling in intelligent decision support systems aims to improve the efficiency and accuracy of decision-making processes by incorporating fuzzy logic and preference modeling techniques. While network public opinion (NPO) has the potential to drive judicial reform and progress, it also poses challenges to the independence of the judiciary due to the negative impact of malicious public opinion. To tackle this issue within the context of intelligent decision support systems, this study provides an insightful overview of current NPO monitoring technologies. Recognizing the complexities associated with handling large-scale NPO data and mitigating significant interference, a novel judicial domain NPO monitoring model is proposed, which centers around semantic feature analysis. This model takes into account time series characteristics, binary semantic fitting, and public sentiment intensity. Notably, it leverages a bidirectional long short-term memory (Bi-LSTM) network (S-Bi-LSTM) to construct a judicial domain semantic similarity calculation model. The semantic similarity values between sentences are obtained through the utilization of a fully connected layer. Empirical evaluations demonstrate the remarkable performance of the proposed model, achieving an accuracy rate of 85.9% and an F1 value of 87.1 on the test set, surpassing existing sentence semantic similarity models. Ultimately, the proposed model significantly enhances the monitoring capabilities of judicial authorities over NPO, thereby alleviating the burden on public relations faced by judicial institutions and fostering a more equitable execution of judicial power.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"10 ","pages":"e2385"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623130/pdf/","citationCount":"0","resultStr":"{\"title\":\"Design of judicial public opinion supervision and intelligent decision-making model based on Bi-LSTM.\",\"authors\":\"Heng Guo\",\"doi\":\"10.7717/peerj-cs.2385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fuzzy preference modeling in intelligent decision support systems aims to improve the efficiency and accuracy of decision-making processes by incorporating fuzzy logic and preference modeling techniques. While network public opinion (NPO) has the potential to drive judicial reform and progress, it also poses challenges to the independence of the judiciary due to the negative impact of malicious public opinion. To tackle this issue within the context of intelligent decision support systems, this study provides an insightful overview of current NPO monitoring technologies. Recognizing the complexities associated with handling large-scale NPO data and mitigating significant interference, a novel judicial domain NPO monitoring model is proposed, which centers around semantic feature analysis. This model takes into account time series characteristics, binary semantic fitting, and public sentiment intensity. Notably, it leverages a bidirectional long short-term memory (Bi-LSTM) network (S-Bi-LSTM) to construct a judicial domain semantic similarity calculation model. The semantic similarity values between sentences are obtained through the utilization of a fully connected layer. Empirical evaluations demonstrate the remarkable performance of the proposed model, achieving an accuracy rate of 85.9% and an F1 value of 87.1 on the test set, surpassing existing sentence semantic similarity models. Ultimately, the proposed model significantly enhances the monitoring capabilities of judicial authorities over NPO, thereby alleviating the burden on public relations faced by judicial institutions and fostering a more equitable execution of judicial power.</p>\",\"PeriodicalId\":54224,\"journal\":{\"name\":\"PeerJ Computer Science\",\"volume\":\"10 \",\"pages\":\"e2385\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623130/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.7717/peerj-cs.2385\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2385","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

智能决策支持系统中的模糊偏好建模是将模糊逻辑和偏好建模技术相结合,以提高决策过程的效率和准确性。网络民意具有推动司法改革和进步的潜力,但也因恶意舆论的负面影响对司法独立构成挑战。为了在智能决策支持系统的背景下解决这个问题,本研究提供了当前NPO监测技术的深刻概述。考虑到处理大规模NPO数据和减少重大干扰的复杂性,提出了一种以语义特征分析为中心的司法领域NPO监测模型。该模型考虑了时间序列特征、二值语义拟合和公众情绪强度。值得注意的是,它利用双向长短期记忆(Bi-LSTM)网络(S-Bi-LSTM)构建了司法领域语义相似性计算模型。利用全连通层获得句子间的语义相似度。经验评价表明,该模型的准确率达到85.9%,在测试集上的F1值达到87.1,超过了现有的句子语义相似度模型。最终,所提出的模式显著提高了司法当局对非营利组织的监督能力,从而减轻了司法机构面临的公共关系负担,促进司法权力更加公平地行使。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of judicial public opinion supervision and intelligent decision-making model based on Bi-LSTM.

Fuzzy preference modeling in intelligent decision support systems aims to improve the efficiency and accuracy of decision-making processes by incorporating fuzzy logic and preference modeling techniques. While network public opinion (NPO) has the potential to drive judicial reform and progress, it also poses challenges to the independence of the judiciary due to the negative impact of malicious public opinion. To tackle this issue within the context of intelligent decision support systems, this study provides an insightful overview of current NPO monitoring technologies. Recognizing the complexities associated with handling large-scale NPO data and mitigating significant interference, a novel judicial domain NPO monitoring model is proposed, which centers around semantic feature analysis. This model takes into account time series characteristics, binary semantic fitting, and public sentiment intensity. Notably, it leverages a bidirectional long short-term memory (Bi-LSTM) network (S-Bi-LSTM) to construct a judicial domain semantic similarity calculation model. The semantic similarity values between sentences are obtained through the utilization of a fully connected layer. Empirical evaluations demonstrate the remarkable performance of the proposed model, achieving an accuracy rate of 85.9% and an F1 value of 87.1 on the test set, surpassing existing sentence semantic similarity models. Ultimately, the proposed model significantly enhances the monitoring capabilities of judicial authorities over NPO, thereby alleviating the burden on public relations faced by judicial institutions and fostering a more equitable execution of judicial power.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
期刊最新文献
Design of a 3D emotion mapping model for visual feature analysis using improved Gaussian mixture models. Enhancing task execution: a dual-layer approach with multi-queue adaptive priority scheduling. LOGIC: LLM-originated guidance for internal cognitive improvement of small language models in stance detection. Generative AI and future education: a review, theoretical validation, and authors' perspective on challenges and solutions. MSR-UNet: enhancing multi-scale and long-range dependencies in medical image segmentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1