中文法律领域生成命名实体识别框架。

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE PeerJ Computer Science Pub Date : 2024-11-04 eCollection Date: 2024-01-01 DOI:10.7717/peerj-cs.2428
Xingliang Mao, Jie Jiang, Yongzhe Zeng, Yinan Peng, Shichao Zhang, Fangfang Li
{"title":"中文法律领域生成命名实体识别框架。","authors":"Xingliang Mao, Jie Jiang, Yongzhe Zeng, Yinan Peng, Shichao Zhang, Fangfang Li","doi":"10.7717/peerj-cs.2428","DOIUrl":null,"url":null,"abstract":"<p><p>Named entity recognition (NER) is a crucial task in natural language processing, particularly challenging in the legal domain due to the intricate and lengthy nature of legal entities. Existing methods often struggle with accurately identifying entity boundaries and types in legal texts. To address these challenges, we propose a novel sequence-to-sequence framework designed specifically for the legal domain. This framework features an entity-type-aware module that leverages contrastive learning to enhance the prediction of entity types. Additionally, we incorporate a decoder with a copy mechanism that accurately identifies complex legal entities without the need for explicit tagging schemas. Our extensive experiments on two legal datasets show that our framework significantly outperforms state-of-the-art methods, achieving notable improvements in precision, recall, and F1 score. This demonstrates the effectiveness of our approach in improving entity recognition in legal texts, offering a promising direction for future research in legal NER.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"10 ","pages":"e2428"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11622873/pdf/","citationCount":"0","resultStr":"{\"title\":\"Generative named entity recognition framework for Chinese legal domain.\",\"authors\":\"Xingliang Mao, Jie Jiang, Yongzhe Zeng, Yinan Peng, Shichao Zhang, Fangfang Li\",\"doi\":\"10.7717/peerj-cs.2428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Named entity recognition (NER) is a crucial task in natural language processing, particularly challenging in the legal domain due to the intricate and lengthy nature of legal entities. Existing methods often struggle with accurately identifying entity boundaries and types in legal texts. To address these challenges, we propose a novel sequence-to-sequence framework designed specifically for the legal domain. This framework features an entity-type-aware module that leverages contrastive learning to enhance the prediction of entity types. Additionally, we incorporate a decoder with a copy mechanism that accurately identifies complex legal entities without the need for explicit tagging schemas. Our extensive experiments on two legal datasets show that our framework significantly outperforms state-of-the-art methods, achieving notable improvements in precision, recall, and F1 score. This demonstrates the effectiveness of our approach in improving entity recognition in legal texts, offering a promising direction for future research in legal NER.</p>\",\"PeriodicalId\":54224,\"journal\":{\"name\":\"PeerJ Computer Science\",\"volume\":\"10 \",\"pages\":\"e2428\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11622873/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.7717/peerj-cs.2428\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2428","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

命名实体识别(NER)是自然语言处理中的一项关键任务,由于法律实体的复杂性和冗长性,在法律领域尤其具有挑战性。现有的方法往往难以准确识别法律文本中的实体边界和类型。为了解决这些挑战,我们提出了一个专门为法律领域设计的新的序列到序列框架。该框架具有实体类型感知模块,该模块利用对比学习来增强实体类型的预测。此外,我们还结合了一个带有复制机制的解码器,该机制可以准确识别复杂的法律实体,而无需显式标记模式。我们在两个法律数据集上的广泛实验表明,我们的框架明显优于最先进的方法,在精度、召回率和F1分数方面取得了显着提高。这证明了我们的方法在提高法律文本实体识别方面的有效性,为法律NER的未来研究提供了一个有希望的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generative named entity recognition framework for Chinese legal domain.

Named entity recognition (NER) is a crucial task in natural language processing, particularly challenging in the legal domain due to the intricate and lengthy nature of legal entities. Existing methods often struggle with accurately identifying entity boundaries and types in legal texts. To address these challenges, we propose a novel sequence-to-sequence framework designed specifically for the legal domain. This framework features an entity-type-aware module that leverages contrastive learning to enhance the prediction of entity types. Additionally, we incorporate a decoder with a copy mechanism that accurately identifies complex legal entities without the need for explicit tagging schemas. Our extensive experiments on two legal datasets show that our framework significantly outperforms state-of-the-art methods, achieving notable improvements in precision, recall, and F1 score. This demonstrates the effectiveness of our approach in improving entity recognition in legal texts, offering a promising direction for future research in legal NER.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
期刊最新文献
Design of a 3D emotion mapping model for visual feature analysis using improved Gaussian mixture models. Enhancing task execution: a dual-layer approach with multi-queue adaptive priority scheduling. LOGIC: LLM-originated guidance for internal cognitive improvement of small language models in stance detection. Generative AI and future education: a review, theoretical validation, and authors' perspective on challenges and solutions. MSR-UNet: enhancing multi-scale and long-range dependencies in medical image segmentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1