利用随机森林和数据融合技术优化玉米发芽预测。

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE PeerJ Computer Science Pub Date : 2024-11-28 eCollection Date: 2024-01-01 DOI:10.7717/peerj-cs.2468
Lili Wu, Yuqing Xing, Kaiwen Yang, Wenqiang Li, Guangyue Ren, Debang Zhang, Huiping Fan
{"title":"利用随机森林和数据融合技术优化玉米发芽预测。","authors":"Lili Wu, Yuqing Xing, Kaiwen Yang, Wenqiang Li, Guangyue Ren, Debang Zhang, Huiping Fan","doi":"10.7717/peerj-cs.2468","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional methods for detecting seed germination rates often involve lengthy experiments that result in damaged seeds. This study selected the Zheng Dan-958 maize variety to predict germination rates using multi-source information fusion and a random forest (RF) algorithm. Images of the seeds and internal cracks were captured with a digital camera. In contrast, the dielectric constant of the seeds was measured using a flat capacitor and converted into voltage readings. Features such as color, shape, texture, crack count, and normalized voltage were used to form feature vectors. Various prediction algorithms, including random forest (RF), radial basis function (RBF), neural networks (NNs), support vector machine (SVM), and extreme learning machine (ELM), were developed and tested against standard germination experiments. The RF model stood out, with a training time of 5.18 s and the highest accuracy of 92.88%, along with a mean absolute error (MAE) of 0.913 and a root mean square error (RMSE) of 1.163. The study concluded that the RF model, combined with multi-source information fusion, offers a feasible and nondestructive method for quickly and accurately predicting maize seed germination rates.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"10 ","pages":"e2468"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623106/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimizing maize germination forecasts with random forest and data fusion techniques.\",\"authors\":\"Lili Wu, Yuqing Xing, Kaiwen Yang, Wenqiang Li, Guangyue Ren, Debang Zhang, Huiping Fan\",\"doi\":\"10.7717/peerj-cs.2468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traditional methods for detecting seed germination rates often involve lengthy experiments that result in damaged seeds. This study selected the Zheng Dan-958 maize variety to predict germination rates using multi-source information fusion and a random forest (RF) algorithm. Images of the seeds and internal cracks were captured with a digital camera. In contrast, the dielectric constant of the seeds was measured using a flat capacitor and converted into voltage readings. Features such as color, shape, texture, crack count, and normalized voltage were used to form feature vectors. Various prediction algorithms, including random forest (RF), radial basis function (RBF), neural networks (NNs), support vector machine (SVM), and extreme learning machine (ELM), were developed and tested against standard germination experiments. The RF model stood out, with a training time of 5.18 s and the highest accuracy of 92.88%, along with a mean absolute error (MAE) of 0.913 and a root mean square error (RMSE) of 1.163. The study concluded that the RF model, combined with multi-source information fusion, offers a feasible and nondestructive method for quickly and accurately predicting maize seed germination rates.</p>\",\"PeriodicalId\":54224,\"journal\":{\"name\":\"PeerJ Computer Science\",\"volume\":\"10 \",\"pages\":\"e2468\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623106/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.7717/peerj-cs.2468\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2468","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

检测种子发芽率的传统方法通常需要进行冗长的实验,结果导致种子受损。以郑单958玉米品种为研究对象,采用多源信息融合和随机森林(RF)算法预测发芽率。种子和内部裂缝的图像是用数码相机拍摄的。相反,种子的介电常数是用扁平电容器测量的,并转换成电压读数。使用颜色、形状、纹理、裂纹数和归一化电压等特征形成特征向量。开发了各种预测算法,包括随机森林(RF)、径向基函数(RBF)、神经网络(nn)、支持向量机(SVM)和极限学习机(ELM),并在标准发芽实验中进行了测试。该模型训练时间为5.18 s,最高准确率为92.88%,平均绝对误差(MAE)为0.913,均方根误差(RMSE)为1.163。研究表明,射频模型结合多源信息融合,为快速准确预测玉米种子发芽率提供了一种可行的、无损的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing maize germination forecasts with random forest and data fusion techniques.

Traditional methods for detecting seed germination rates often involve lengthy experiments that result in damaged seeds. This study selected the Zheng Dan-958 maize variety to predict germination rates using multi-source information fusion and a random forest (RF) algorithm. Images of the seeds and internal cracks were captured with a digital camera. In contrast, the dielectric constant of the seeds was measured using a flat capacitor and converted into voltage readings. Features such as color, shape, texture, crack count, and normalized voltage were used to form feature vectors. Various prediction algorithms, including random forest (RF), radial basis function (RBF), neural networks (NNs), support vector machine (SVM), and extreme learning machine (ELM), were developed and tested against standard germination experiments. The RF model stood out, with a training time of 5.18 s and the highest accuracy of 92.88%, along with a mean absolute error (MAE) of 0.913 and a root mean square error (RMSE) of 1.163. The study concluded that the RF model, combined with multi-source information fusion, offers a feasible and nondestructive method for quickly and accurately predicting maize seed germination rates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
期刊最新文献
Design of a 3D emotion mapping model for visual feature analysis using improved Gaussian mixture models. Enhancing task execution: a dual-layer approach with multi-queue adaptive priority scheduling. LOGIC: LLM-originated guidance for internal cognitive improvement of small language models in stance detection. Generative AI and future education: a review, theoretical validation, and authors' perspective on challenges and solutions. MSR-UNet: enhancing multi-scale and long-range dependencies in medical image segmentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1