基于imu辅助的自适应网格的视频运动去模糊。

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE PeerJ Computer Science Pub Date : 2024-11-25 eCollection Date: 2024-01-01 DOI:10.7717/peerj-cs.2540
Ahmet Arslan, Gokhan Koray Gultekin, Afsar Saranli
{"title":"基于imu辅助的自适应网格的视频运动去模糊。","authors":"Ahmet Arslan, Gokhan Koray Gultekin, Afsar Saranli","doi":"10.7717/peerj-cs.2540","DOIUrl":null,"url":null,"abstract":"<p><p>Motion blur is a problem that degrades the visual quality of images for human perception and also challenges computer vision tasks. While existing studies mostly focus on deblurring algorithms to remove uniform blur due to their computational efficiency, such approaches fail when faced with non-uniform blur. In this study, we propose a novel algorithm for motion deblurring that utilizes an adaptive mesh-grid approach to manage non-uniform motion blur with a focus on reducing the computational cost. The proposed method divides the image into a mesh-grid and estimates the blur point spread function (PSF) using an inertial sensor. For each video frame, the size of the grid cells is determined adaptively according to the in-frame spatial variance of blur magnitude which is a proposed metric for the blur non-uniformity in the video frame. The adaptive mesh-size takes smaller values for higher variances, increasing the spatial accuracy of the PSF estimation. Two versions of the adaptive mesh-size algorithm are studied, optimized for either best quality or balanced performance and computation cost. Also, a trade-off parameter is defined for changing the mesh-size according to application requirements. The experiments, using real-life motion data combined with simulated motion blur demonstrate that the proposed adaptive mesh-size algorithm can achieve 5% increase in PSNR quality gain together with a 19% decrease in computation time on the average when compared to the constant mesh-size method.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"10 ","pages":"e2540"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11622971/pdf/","citationCount":"0","resultStr":"{\"title\":\"IMU-aided adaptive mesh-grid based video motion deblurring.\",\"authors\":\"Ahmet Arslan, Gokhan Koray Gultekin, Afsar Saranli\",\"doi\":\"10.7717/peerj-cs.2540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Motion blur is a problem that degrades the visual quality of images for human perception and also challenges computer vision tasks. While existing studies mostly focus on deblurring algorithms to remove uniform blur due to their computational efficiency, such approaches fail when faced with non-uniform blur. In this study, we propose a novel algorithm for motion deblurring that utilizes an adaptive mesh-grid approach to manage non-uniform motion blur with a focus on reducing the computational cost. The proposed method divides the image into a mesh-grid and estimates the blur point spread function (PSF) using an inertial sensor. For each video frame, the size of the grid cells is determined adaptively according to the in-frame spatial variance of blur magnitude which is a proposed metric for the blur non-uniformity in the video frame. The adaptive mesh-size takes smaller values for higher variances, increasing the spatial accuracy of the PSF estimation. Two versions of the adaptive mesh-size algorithm are studied, optimized for either best quality or balanced performance and computation cost. Also, a trade-off parameter is defined for changing the mesh-size according to application requirements. The experiments, using real-life motion data combined with simulated motion blur demonstrate that the proposed adaptive mesh-size algorithm can achieve 5% increase in PSNR quality gain together with a 19% decrease in computation time on the average when compared to the constant mesh-size method.</p>\",\"PeriodicalId\":54224,\"journal\":{\"name\":\"PeerJ Computer Science\",\"volume\":\"10 \",\"pages\":\"e2540\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11622971/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.7717/peerj-cs.2540\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2540","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

运动模糊是一个降低人类感知图像视觉质量的问题,也是计算机视觉任务的挑战。现有的研究主要集中在去除均匀模糊的算法上,由于计算效率的原因,这些方法在面对非均匀模糊时失败。在本研究中,我们提出了一种新的运动去模糊算法,该算法利用自适应网格方法来管理非均匀运动模糊,重点是降低计算成本。该方法将图像划分为网格,利用惯性传感器估计模糊点扩散函数(PSF)。对于每个视频帧,根据帧内模糊幅度的空间方差自适应确定网格单元的大小,模糊幅度是视频帧内模糊不均匀性的度量。自适应网格尺寸对于较大的方差取较小的值,提高了PSF估计的空间精度。研究了两种版本的自适应网格大小算法,以达到最佳质量或平衡性能和计算成本。此外,还定义了一个权衡参数,用于根据应用程序需求更改网格大小。使用真实运动数据和模拟运动模糊进行的实验表明,与固定网格大小的方法相比,所提出的自适应网格大小算法可使PSNR质量增益提高5%,计算时间平均减少19%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IMU-aided adaptive mesh-grid based video motion deblurring.

Motion blur is a problem that degrades the visual quality of images for human perception and also challenges computer vision tasks. While existing studies mostly focus on deblurring algorithms to remove uniform blur due to their computational efficiency, such approaches fail when faced with non-uniform blur. In this study, we propose a novel algorithm for motion deblurring that utilizes an adaptive mesh-grid approach to manage non-uniform motion blur with a focus on reducing the computational cost. The proposed method divides the image into a mesh-grid and estimates the blur point spread function (PSF) using an inertial sensor. For each video frame, the size of the grid cells is determined adaptively according to the in-frame spatial variance of blur magnitude which is a proposed metric for the blur non-uniformity in the video frame. The adaptive mesh-size takes smaller values for higher variances, increasing the spatial accuracy of the PSF estimation. Two versions of the adaptive mesh-size algorithm are studied, optimized for either best quality or balanced performance and computation cost. Also, a trade-off parameter is defined for changing the mesh-size according to application requirements. The experiments, using real-life motion data combined with simulated motion blur demonstrate that the proposed adaptive mesh-size algorithm can achieve 5% increase in PSNR quality gain together with a 19% decrease in computation time on the average when compared to the constant mesh-size method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
期刊最新文献
Design of a 3D emotion mapping model for visual feature analysis using improved Gaussian mixture models. Enhancing task execution: a dual-layer approach with multi-queue adaptive priority scheduling. LOGIC: LLM-originated guidance for internal cognitive improvement of small language models in stance detection. Generative AI and future education: a review, theoretical validation, and authors' perspective on challenges and solutions. MSR-UNet: enhancing multi-scale and long-range dependencies in medical image segmentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1