Mohammed A AboArab, Vassiliki T Potsika, Alexis Theodorou, Sylvia Vagena, Miltiadis Gravanis, Fragiska Sigala, Dimitrios I Fotiadis
{"title":"推进渐进式Web应用程序以利用医学成像实现医学和多平面重建中的数字成像和通信的可视化:软件开发和验证研究。","authors":"Mohammed A AboArab, Vassiliki T Potsika, Alexis Theodorou, Sylvia Vagena, Miltiadis Gravanis, Fragiska Sigala, Dimitrios I Fotiadis","doi":"10.2196/63834","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In medical imaging, 3D visualization is vital for displaying volumetric organs, enhancing diagnosis and analysis. Multiplanar reconstruction (MPR) improves visual and diagnostic capabilities by transforming 2D images from computed tomography (CT) and magnetic resonance imaging into 3D representations. Web-based Digital Imaging and Communications in Medicine (DICOM) viewers integrated into picture archiving and communication systems facilitate access to pictures and interaction with remote data. However, the adoption of progressive web applications (PWAs) for web-based DICOM and MPR visualization remains limited. This paper addresses this gap by leveraging PWAs for their offline access and enhanced performance.</p><p><strong>Objective: </strong>This study aims to evaluate the integration of DICOM and MPR visualization into the web using PWAs, addressing challenges related to cross-platform compatibility, integration capabilities, and high-resolution image reconstruction for medical image visualization.</p><p><strong>Methods: </strong>Our paper introduces a PWA that uses a modular design for enhancing DICOM and MPR visualization in web-based medical imaging. By integrating React.js and Cornerstone.js, the application offers seamless DICOM image processing, ensures cross-browser compatibility, and delivers a responsive user experience across multiple devices. It uses advanced interpolation techniques to make volume reconstructions more accurate. This makes MPR analysis and visualization better in a web environment, thus promising a substantial advance in medical imaging analysis.</p><p><strong>Results: </strong>In our approach, the performance of DICOM- and MPR-based PWAs for medical image visualization and reconstruction was evaluated through comprehensive experiments. The application excelled in terms of loading time and volume reconstruction, particularly in Google Chrome, whereas Firefox showed superior performance in viewing slices. This study uses a dataset comprising 22 CT scans of peripheral artery patients to demonstrate the application's robust performance, with Google Chrome outperforming other browsers in both the local area network and wide area network settings. In addition, the application's accuracy in MPR reconstructions was validated with an error margin of <0.05 mm and outperformed the state-of-the-art methods by 84% to 98% in loading and volume rendering time.</p><p><strong>Conclusions: </strong>This paper highlights advancements in DICOM and MPR visualization using PWAs, addressing the gaps in web-based medical imaging. By exploiting PWA features such as offline access and improved performance, we have significantly advanced medical imaging technology, focusing on cross-platform compatibility, integration efficiency, and speed. Our application outperforms existing platforms for handling complex MPR analyses and accurate analysis of medical imaging as validated through peripheral artery CT imaging.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"12 ","pages":"e63834"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11667143/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advancing Progressive Web Applications to Leverage Medical Imaging for Visualization of Digital Imaging and Communications in Medicine and Multiplanar Reconstruction: Software Development and Validation Study.\",\"authors\":\"Mohammed A AboArab, Vassiliki T Potsika, Alexis Theodorou, Sylvia Vagena, Miltiadis Gravanis, Fragiska Sigala, Dimitrios I Fotiadis\",\"doi\":\"10.2196/63834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>In medical imaging, 3D visualization is vital for displaying volumetric organs, enhancing diagnosis and analysis. Multiplanar reconstruction (MPR) improves visual and diagnostic capabilities by transforming 2D images from computed tomography (CT) and magnetic resonance imaging into 3D representations. Web-based Digital Imaging and Communications in Medicine (DICOM) viewers integrated into picture archiving and communication systems facilitate access to pictures and interaction with remote data. However, the adoption of progressive web applications (PWAs) for web-based DICOM and MPR visualization remains limited. This paper addresses this gap by leveraging PWAs for their offline access and enhanced performance.</p><p><strong>Objective: </strong>This study aims to evaluate the integration of DICOM and MPR visualization into the web using PWAs, addressing challenges related to cross-platform compatibility, integration capabilities, and high-resolution image reconstruction for medical image visualization.</p><p><strong>Methods: </strong>Our paper introduces a PWA that uses a modular design for enhancing DICOM and MPR visualization in web-based medical imaging. By integrating React.js and Cornerstone.js, the application offers seamless DICOM image processing, ensures cross-browser compatibility, and delivers a responsive user experience across multiple devices. It uses advanced interpolation techniques to make volume reconstructions more accurate. This makes MPR analysis and visualization better in a web environment, thus promising a substantial advance in medical imaging analysis.</p><p><strong>Results: </strong>In our approach, the performance of DICOM- and MPR-based PWAs for medical image visualization and reconstruction was evaluated through comprehensive experiments. The application excelled in terms of loading time and volume reconstruction, particularly in Google Chrome, whereas Firefox showed superior performance in viewing slices. This study uses a dataset comprising 22 CT scans of peripheral artery patients to demonstrate the application's robust performance, with Google Chrome outperforming other browsers in both the local area network and wide area network settings. In addition, the application's accuracy in MPR reconstructions was validated with an error margin of <0.05 mm and outperformed the state-of-the-art methods by 84% to 98% in loading and volume rendering time.</p><p><strong>Conclusions: </strong>This paper highlights advancements in DICOM and MPR visualization using PWAs, addressing the gaps in web-based medical imaging. By exploiting PWA features such as offline access and improved performance, we have significantly advanced medical imaging technology, focusing on cross-platform compatibility, integration efficiency, and speed. Our application outperforms existing platforms for handling complex MPR analyses and accurate analysis of medical imaging as validated through peripheral artery CT imaging.</p>\",\"PeriodicalId\":56334,\"journal\":{\"name\":\"JMIR Medical Informatics\",\"volume\":\"12 \",\"pages\":\"e63834\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11667143/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMIR Medical Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2196/63834\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/63834","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
Advancing Progressive Web Applications to Leverage Medical Imaging for Visualization of Digital Imaging and Communications in Medicine and Multiplanar Reconstruction: Software Development and Validation Study.
Background: In medical imaging, 3D visualization is vital for displaying volumetric organs, enhancing diagnosis and analysis. Multiplanar reconstruction (MPR) improves visual and diagnostic capabilities by transforming 2D images from computed tomography (CT) and magnetic resonance imaging into 3D representations. Web-based Digital Imaging and Communications in Medicine (DICOM) viewers integrated into picture archiving and communication systems facilitate access to pictures and interaction with remote data. However, the adoption of progressive web applications (PWAs) for web-based DICOM and MPR visualization remains limited. This paper addresses this gap by leveraging PWAs for their offline access and enhanced performance.
Objective: This study aims to evaluate the integration of DICOM and MPR visualization into the web using PWAs, addressing challenges related to cross-platform compatibility, integration capabilities, and high-resolution image reconstruction for medical image visualization.
Methods: Our paper introduces a PWA that uses a modular design for enhancing DICOM and MPR visualization in web-based medical imaging. By integrating React.js and Cornerstone.js, the application offers seamless DICOM image processing, ensures cross-browser compatibility, and delivers a responsive user experience across multiple devices. It uses advanced interpolation techniques to make volume reconstructions more accurate. This makes MPR analysis and visualization better in a web environment, thus promising a substantial advance in medical imaging analysis.
Results: In our approach, the performance of DICOM- and MPR-based PWAs for medical image visualization and reconstruction was evaluated through comprehensive experiments. The application excelled in terms of loading time and volume reconstruction, particularly in Google Chrome, whereas Firefox showed superior performance in viewing slices. This study uses a dataset comprising 22 CT scans of peripheral artery patients to demonstrate the application's robust performance, with Google Chrome outperforming other browsers in both the local area network and wide area network settings. In addition, the application's accuracy in MPR reconstructions was validated with an error margin of <0.05 mm and outperformed the state-of-the-art methods by 84% to 98% in loading and volume rendering time.
Conclusions: This paper highlights advancements in DICOM and MPR visualization using PWAs, addressing the gaps in web-based medical imaging. By exploiting PWA features such as offline access and improved performance, we have significantly advanced medical imaging technology, focusing on cross-platform compatibility, integration efficiency, and speed. Our application outperforms existing platforms for handling complex MPR analyses and accurate analysis of medical imaging as validated through peripheral artery CT imaging.
期刊介绍:
JMIR Medical Informatics (JMI, ISSN 2291-9694) is a top-rated, tier A journal which focuses on clinical informatics, big data in health and health care, decision support for health professionals, electronic health records, ehealth infrastructures and implementation. It has a focus on applied, translational research, with a broad readership including clinicians, CIOs, engineers, industry and health informatics professionals.
Published by JMIR Publications, publisher of the Journal of Medical Internet Research (JMIR), the leading eHealth/mHealth journal (Impact Factor 2016: 5.175), JMIR Med Inform has a slightly different scope (emphasizing more on applications for clinicians and health professionals rather than consumers/citizens, which is the focus of JMIR), publishes even faster, and also allows papers which are more technical or more formative than what would be published in the Journal of Medical Internet Research.