{"title":"Deep DeePC:数据支持的预测控制,使用深度学习进行低在线优化或没有在线优化","authors":"Xuewen Zhang, Kaixiang Zhang, Zhaojian Li, Xunyuan Yin","doi":"10.1002/aic.18644","DOIUrl":null,"url":null,"abstract":"Data-enabled predictive control (DeePC) is a data-driven control algorithm that utilizes data matrices to form a non-parametric representation of the underlying system, predicting future behaviors and generating optimal control actions. DeePC typically requires solving an online optimization problem, the complexity of which is heavily influenced by the amount of data used, potentially leading to expensive online computation. In this article, we leverage deep learning to propose a highly computationally efficient DeePC approach for general nonlinear processes, referred to as Deep DeePC. Specifically, a deep neural network is employed to learn the DeePC vector operator, which is an essential component of the non-parametric representation of DeePC. This neural network is trained offline using historical open-loop input and output data of the nonlinear process. With the trained neural network, the Deep DeePC framework is formed for online control implementation. At each sampling instant, this neural network directly outputs the DeePC operator, eliminating the need for online optimization as conventional DeePC. The optimal control action is obtained based on the DeePC operator updated by the trained neural network. To address constrained scenarios, a constraint handling scheme is further proposed and integrated with the Deep DeePC to handle hard constraints during online implementation. The efficacy and superiority of the proposed Deep DeePC approach are demonstrated using two benchmark process examples.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"25 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep DeePC: Data-enabled predictive control with low or no online optimization using deep learning\",\"authors\":\"Xuewen Zhang, Kaixiang Zhang, Zhaojian Li, Xunyuan Yin\",\"doi\":\"10.1002/aic.18644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data-enabled predictive control (DeePC) is a data-driven control algorithm that utilizes data matrices to form a non-parametric representation of the underlying system, predicting future behaviors and generating optimal control actions. DeePC typically requires solving an online optimization problem, the complexity of which is heavily influenced by the amount of data used, potentially leading to expensive online computation. In this article, we leverage deep learning to propose a highly computationally efficient DeePC approach for general nonlinear processes, referred to as Deep DeePC. Specifically, a deep neural network is employed to learn the DeePC vector operator, which is an essential component of the non-parametric representation of DeePC. This neural network is trained offline using historical open-loop input and output data of the nonlinear process. With the trained neural network, the Deep DeePC framework is formed for online control implementation. At each sampling instant, this neural network directly outputs the DeePC operator, eliminating the need for online optimization as conventional DeePC. The optimal control action is obtained based on the DeePC operator updated by the trained neural network. To address constrained scenarios, a constraint handling scheme is further proposed and integrated with the Deep DeePC to handle hard constraints during online implementation. The efficacy and superiority of the proposed Deep DeePC approach are demonstrated using two benchmark process examples.\",\"PeriodicalId\":120,\"journal\":{\"name\":\"AIChE Journal\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIChE Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/aic.18644\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18644","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Deep DeePC: Data-enabled predictive control with low or no online optimization using deep learning
Data-enabled predictive control (DeePC) is a data-driven control algorithm that utilizes data matrices to form a non-parametric representation of the underlying system, predicting future behaviors and generating optimal control actions. DeePC typically requires solving an online optimization problem, the complexity of which is heavily influenced by the amount of data used, potentially leading to expensive online computation. In this article, we leverage deep learning to propose a highly computationally efficient DeePC approach for general nonlinear processes, referred to as Deep DeePC. Specifically, a deep neural network is employed to learn the DeePC vector operator, which is an essential component of the non-parametric representation of DeePC. This neural network is trained offline using historical open-loop input and output data of the nonlinear process. With the trained neural network, the Deep DeePC framework is formed for online control implementation. At each sampling instant, this neural network directly outputs the DeePC operator, eliminating the need for online optimization as conventional DeePC. The optimal control action is obtained based on the DeePC operator updated by the trained neural network. To address constrained scenarios, a constraint handling scheme is further proposed and integrated with the Deep DeePC to handle hard constraints during online implementation. The efficacy and superiority of the proposed Deep DeePC approach are demonstrated using two benchmark process examples.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.