Young Jun Kim , Hyun-cheol Kim , Daehyeon Han , Julienne Stroeve , Jungho Im
{"title":"利用深度学习对北极海冰浓度的长期预测:地表温度、辐射和风况的影响","authors":"Young Jun Kim , Hyun-cheol Kim , Daehyeon Han , Julienne Stroeve , Jungho Im","doi":"10.1016/j.rse.2024.114568","DOIUrl":null,"url":null,"abstract":"<div><div>Over the last five decades, Arctic sea ice has been shrinking in area and thickness. As a result, increased marine traffic has created a need for improved sea ice forecasting on seasonal to annual time-scales. In this study, we introduce a novel UNET-based deep learning model to forecast sea ice concentration up to 12 months. Based on yearly hindcast validation, the UNET 3-, 6-, 9-, and 12-month predictions provided more accurate and stable predictions than did the four baseline models: the Copernicus Climate Change Service (C3S), the damped anomaly persistence (DP) forecast, and two deep learning approach, the Convolutional Neural Network (CNN) models and Convolutional Long Short-Term Memory (ConvLSTM). During years with large departures from the long-term trend, the proposed UNET model exhibited promising SIC prediction results with root-mean-square errors (RMSEs), which were reduced from 17.35 to 7.07 % compared to the four baseline models. Our findings also confirmed the relative importance of each predictor variable (temperature, incoming solar radiation, wind speed and direction) in long-term prediction. Past SIC conditions, together with surface temperature emerged as the most important factors for SIC prediction, especially in the marginal ice zone. Incoming solar radiation and wind speed and direction showed greater sensitivity in predicting SICs in areas with thin ice. This model offers the potential to shape Arctic development and management plans and strategies, ensuring extended forecasting periods and enhanced prediction accuracy.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"318 ","pages":"Article 114568"},"PeriodicalIF":11.1000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-term prediction of Arctic sea ice concentrations using deep learning: Effects of surface temperature, radiation, and wind conditions\",\"authors\":\"Young Jun Kim , Hyun-cheol Kim , Daehyeon Han , Julienne Stroeve , Jungho Im\",\"doi\":\"10.1016/j.rse.2024.114568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Over the last five decades, Arctic sea ice has been shrinking in area and thickness. As a result, increased marine traffic has created a need for improved sea ice forecasting on seasonal to annual time-scales. In this study, we introduce a novel UNET-based deep learning model to forecast sea ice concentration up to 12 months. Based on yearly hindcast validation, the UNET 3-, 6-, 9-, and 12-month predictions provided more accurate and stable predictions than did the four baseline models: the Copernicus Climate Change Service (C3S), the damped anomaly persistence (DP) forecast, and two deep learning approach, the Convolutional Neural Network (CNN) models and Convolutional Long Short-Term Memory (ConvLSTM). During years with large departures from the long-term trend, the proposed UNET model exhibited promising SIC prediction results with root-mean-square errors (RMSEs), which were reduced from 17.35 to 7.07 % compared to the four baseline models. Our findings also confirmed the relative importance of each predictor variable (temperature, incoming solar radiation, wind speed and direction) in long-term prediction. Past SIC conditions, together with surface temperature emerged as the most important factors for SIC prediction, especially in the marginal ice zone. Incoming solar radiation and wind speed and direction showed greater sensitivity in predicting SICs in areas with thin ice. This model offers the potential to shape Arctic development and management plans and strategies, ensuring extended forecasting periods and enhanced prediction accuracy.</div></div>\",\"PeriodicalId\":417,\"journal\":{\"name\":\"Remote Sensing of Environment\",\"volume\":\"318 \",\"pages\":\"Article 114568\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing of Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0034425724005947\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425724005947","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Long-term prediction of Arctic sea ice concentrations using deep learning: Effects of surface temperature, radiation, and wind conditions
Over the last five decades, Arctic sea ice has been shrinking in area and thickness. As a result, increased marine traffic has created a need for improved sea ice forecasting on seasonal to annual time-scales. In this study, we introduce a novel UNET-based deep learning model to forecast sea ice concentration up to 12 months. Based on yearly hindcast validation, the UNET 3-, 6-, 9-, and 12-month predictions provided more accurate and stable predictions than did the four baseline models: the Copernicus Climate Change Service (C3S), the damped anomaly persistence (DP) forecast, and two deep learning approach, the Convolutional Neural Network (CNN) models and Convolutional Long Short-Term Memory (ConvLSTM). During years with large departures from the long-term trend, the proposed UNET model exhibited promising SIC prediction results with root-mean-square errors (RMSEs), which were reduced from 17.35 to 7.07 % compared to the four baseline models. Our findings also confirmed the relative importance of each predictor variable (temperature, incoming solar radiation, wind speed and direction) in long-term prediction. Past SIC conditions, together with surface temperature emerged as the most important factors for SIC prediction, especially in the marginal ice zone. Incoming solar radiation and wind speed and direction showed greater sensitivity in predicting SICs in areas with thin ice. This model offers the potential to shape Arctic development and management plans and strategies, ensuring extended forecasting periods and enhanced prediction accuracy.
期刊介绍:
Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing.
The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques.
RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.