不完全性脊髓损伤患者步行时骨盆扰动的间歇性适应增强了运动学习的保留和泛化。

IF 1.7 4区 医学 Q4 NEUROSCIENCES Experimental Brain Research Pub Date : 2024-12-11 DOI:10.1007/s00221-024-06971-z
Seoung Hoon Park, Shijun Yan, Weena Dee, Renee Keefer, William Z Rymer, Ming Wu
{"title":"不完全性脊髓损伤患者步行时骨盆扰动的间歇性适应增强了运动学习的保留和泛化。","authors":"Seoung Hoon Park, Shijun Yan, Weena Dee, Renee Keefer, William Z Rymer, Ming Wu","doi":"10.1007/s00221-024-06971-z","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this study was to determine whether the intermittent adaptation to pelvis perturbation load enhances retention of improved weight transfer and generalization of motor skills from treadmill to overground walking, compared with effects of the continuous adaptation. Fifteen individuals with incomplete SCI participated in two experimental sessions. Each session consisted of (1) perturbed treadmill walking with either intermittent (i.e., interspersed 3 intervals of no perturbation) or continuous (no interval) adaptation to novel walking patterns induced by external pelvis perturbation and (2) instrumented treadmill walking and overground walking before, immediately, and 10-min post perturbed treadmill walking. The external pulling force was applied to the pelvis towards the lateral side while the leg touched the treadmill belt. Participants showed a retention of improved mediolateral weight transfer (P = 0.002) and of enhanced activation of hip abductor (P = 0.016) and calf muscles (P < 0.05) in the intermittent condition, whereas the continuous condition did not (P ≥ 0.05). After the perturbed treadmill walking practice, participants exhibited increased mediolateral weight transfer during overground walking (P = 0.04) and enhanced propulsion (P = 0.047) during the instrumented treadmill walking for the intermittent condition, whereas the continuous condition did not show significant changes (P ≥ 0.13). Further, the intermittent condition induced a greater increase in overground walking speed than the continuous condition did (P = 0.002). In conclusion, intermittent adaptation to the pelvis perturbation load during treadmill walking can promote retention and generalization of motor learning for improving walking and balance in people with incomplete SCI.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":"243 1","pages":"21"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intermittent adaptation to pelvis perturbation during walking enhances retention and generalization of motor learning in people with incomplete spinal cord injury.\",\"authors\":\"Seoung Hoon Park, Shijun Yan, Weena Dee, Renee Keefer, William Z Rymer, Ming Wu\",\"doi\":\"10.1007/s00221-024-06971-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The purpose of this study was to determine whether the intermittent adaptation to pelvis perturbation load enhances retention of improved weight transfer and generalization of motor skills from treadmill to overground walking, compared with effects of the continuous adaptation. Fifteen individuals with incomplete SCI participated in two experimental sessions. Each session consisted of (1) perturbed treadmill walking with either intermittent (i.e., interspersed 3 intervals of no perturbation) or continuous (no interval) adaptation to novel walking patterns induced by external pelvis perturbation and (2) instrumented treadmill walking and overground walking before, immediately, and 10-min post perturbed treadmill walking. The external pulling force was applied to the pelvis towards the lateral side while the leg touched the treadmill belt. Participants showed a retention of improved mediolateral weight transfer (P = 0.002) and of enhanced activation of hip abductor (P = 0.016) and calf muscles (P < 0.05) in the intermittent condition, whereas the continuous condition did not (P ≥ 0.05). After the perturbed treadmill walking practice, participants exhibited increased mediolateral weight transfer during overground walking (P = 0.04) and enhanced propulsion (P = 0.047) during the instrumented treadmill walking for the intermittent condition, whereas the continuous condition did not show significant changes (P ≥ 0.13). Further, the intermittent condition induced a greater increase in overground walking speed than the continuous condition did (P = 0.002). In conclusion, intermittent adaptation to the pelvis perturbation load during treadmill walking can promote retention and generalization of motor learning for improving walking and balance in people with incomplete SCI.</p>\",\"PeriodicalId\":12268,\"journal\":{\"name\":\"Experimental Brain Research\",\"volume\":\"243 1\",\"pages\":\"21\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Brain Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00221-024-06971-z\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Brain Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00221-024-06971-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是确定与连续适应相比,间歇性适应骨盆扰动负荷是否能增强从跑步机到地面行走的体重转移和运动技能的泛化。15名不完全性脊髓损伤患者参加了两个实验阶段。每个阶段包括:(1)受干扰的跑步机步行,间歇(即,穿插3个无干扰的间隔)或连续(无间隔)适应骨盆外扰动引起的新步行模式;(2)在受干扰的跑步机步行之前,立即和10分钟后进行仪器跑步机步行和地上步行。当腿部接触跑步机带时,向骨盆外侧施加外部拉力。参与者表现出改善的中外侧重量转移(P = 0.002)和增强的髋外展肌(P = 0.016)和小腿肌肉(P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intermittent adaptation to pelvis perturbation during walking enhances retention and generalization of motor learning in people with incomplete spinal cord injury.

The purpose of this study was to determine whether the intermittent adaptation to pelvis perturbation load enhances retention of improved weight transfer and generalization of motor skills from treadmill to overground walking, compared with effects of the continuous adaptation. Fifteen individuals with incomplete SCI participated in two experimental sessions. Each session consisted of (1) perturbed treadmill walking with either intermittent (i.e., interspersed 3 intervals of no perturbation) or continuous (no interval) adaptation to novel walking patterns induced by external pelvis perturbation and (2) instrumented treadmill walking and overground walking before, immediately, and 10-min post perturbed treadmill walking. The external pulling force was applied to the pelvis towards the lateral side while the leg touched the treadmill belt. Participants showed a retention of improved mediolateral weight transfer (P = 0.002) and of enhanced activation of hip abductor (P = 0.016) and calf muscles (P < 0.05) in the intermittent condition, whereas the continuous condition did not (P ≥ 0.05). After the perturbed treadmill walking practice, participants exhibited increased mediolateral weight transfer during overground walking (P = 0.04) and enhanced propulsion (P = 0.047) during the instrumented treadmill walking for the intermittent condition, whereas the continuous condition did not show significant changes (P ≥ 0.13). Further, the intermittent condition induced a greater increase in overground walking speed than the continuous condition did (P = 0.002). In conclusion, intermittent adaptation to the pelvis perturbation load during treadmill walking can promote retention and generalization of motor learning for improving walking and balance in people with incomplete SCI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
5.00%
发文量
228
审稿时长
1 months
期刊介绍: Founded in 1966, Experimental Brain Research publishes original contributions on many aspects of experimental research of the central and peripheral nervous system. The focus is on molecular, physiology, behavior, neurochemistry, developmental, cellular and molecular neurobiology, and experimental pathology relevant to general problems of cerebral function. The journal publishes original papers, reviews, and mini-reviews.
期刊最新文献
Age-related differences in eye movements and the association with Archimedes spiral tracing performance in young and older adults. Left neck and right biceps muscle vibrations have similar effects on perceived body orientation. Revisiting motor unit recruitment to TMS in amyotrophic lateral sclerosis: cortical inhibition is retained during voluntary contractions. Comparative analysis of Voxel-based morphometry using T1 and T2-weighted magnetic resonance imaging to explore the relationship between brain structure and cognitive abilities. Error compensation in a redundant system during 'failure' of individual motor elements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1