{"title":"听觉计算模型中幂律自适应的快速准确近似。","authors":"Daniel R Guest, Laurel H Carney","doi":"10.1121/10.0034457","DOIUrl":null,"url":null,"abstract":"<p><p>Power-law adaptation is a form of neural adaptation that has been recently implemented in a popular model of the mammalian auditory nerve to explain responses to modulated sound and adaptation over long time scales. However, the high computational cost of power-law adaptation, especially for longer simulations, means it must be approximated to be practically usable. Here, a straightforward scheme to approximate power-law adaptation is presented, demonstrating that the approximation improves on an existing approximation provided in the literature. Code that implements the new approximation is provided.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":"156 6","pages":"3954-3957"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11637562/pdf/","citationCount":"0","resultStr":"{\"title\":\"A fast and accurate approximation of power-law adaptation for auditory computational models.\",\"authors\":\"Daniel R Guest, Laurel H Carney\",\"doi\":\"10.1121/10.0034457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Power-law adaptation is a form of neural adaptation that has been recently implemented in a popular model of the mammalian auditory nerve to explain responses to modulated sound and adaptation over long time scales. However, the high computational cost of power-law adaptation, especially for longer simulations, means it must be approximated to be practically usable. Here, a straightforward scheme to approximate power-law adaptation is presented, demonstrating that the approximation improves on an existing approximation provided in the literature. Code that implements the new approximation is provided.</p>\",\"PeriodicalId\":17168,\"journal\":{\"name\":\"Journal of the Acoustical Society of America\",\"volume\":\"156 6\",\"pages\":\"3954-3957\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11637562/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Acoustical Society of America\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1121/10.0034457\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of America","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1121/10.0034457","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
A fast and accurate approximation of power-law adaptation for auditory computational models.
Power-law adaptation is a form of neural adaptation that has been recently implemented in a popular model of the mammalian auditory nerve to explain responses to modulated sound and adaptation over long time scales. However, the high computational cost of power-law adaptation, especially for longer simulations, means it must be approximated to be practically usable. Here, a straightforward scheme to approximate power-law adaptation is presented, demonstrating that the approximation improves on an existing approximation provided in the literature. Code that implements the new approximation is provided.
期刊介绍:
Since 1929 The Journal of the Acoustical Society of America has been the leading source of theoretical and experimental research results in the broad interdisciplinary study of sound. Subject coverage includes: linear and nonlinear acoustics; aeroacoustics, underwater sound and acoustical oceanography; ultrasonics and quantum acoustics; architectural and structural acoustics and vibration; speech, music and noise; psychology and physiology of hearing; engineering acoustics, transduction; bioacoustics, animal bioacoustics.